Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Koutsouleris, Nikolaos

  • Google
  • 2
  • 50
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024<i>N</i>-Acetylcysteine and a Specialized Preventive Intervention for Individuals at High Risk for Psychosis: A Randomized Double-Blind Multicenter Trialcitations
  • 2022Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning17citations

Places of action

Chart of shared publication
Mulert, Christoph
1 / 1 shared
Hellmich, Martin
1 / 1 shared
Philipsen, Alexandra
1 / 1 shared
Bechdolf, Andreas
1 / 1 shared
Ruhrmann, Stephan
1 / 2 shared
Brockhaus-Dumke, Anke
1 / 1 shared
Hurlemann, René
1 / 1 shared
Meyer-Lindenberg, Andreas
1 / 2 shared
Klosterkötter, Joachim
1 / 1 shared
Schmidt, Stefanie J.
1 / 3 shared
Kambeitz, Joseph
1 / 1 shared
Walter, Henrik
1 / 5 shared
Hirjak, Dusan
1 / 1 shared
Schultze-Lutter, Frauke
1 / 1 shared
Müller, Hendrik
1 / 1 shared
Fallgatter, Andreas J.
1 / 2 shared
Poeppl, Timm
1 / 1 shared
Muthesius, Ana
1 / 1 shared
Wasserthal, Sven
1 / 1 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Mulert, Christoph
  • Hellmich, Martin
  • Philipsen, Alexandra
  • Bechdolf, Andreas
  • Ruhrmann, Stephan
  • Brockhaus-Dumke, Anke
  • Hurlemann, René
  • Meyer-Lindenberg, Andreas
  • Klosterkötter, Joachim
  • Schmidt, Stefanie J.
  • Kambeitz, Joseph
  • Walter, Henrik
  • Hirjak, Dusan
  • Schultze-Lutter, Frauke
  • Müller, Hendrik
  • Fallgatter, Andreas J.
  • Poeppl, Timm
  • Muthesius, Ana
  • Wasserthal, Sven
OrganizationsLocationPeople

article

Prediction of Early Symptom Remission in Two Independent Samples of First-Episode Psychosis Patients Using Machine Learning

  • Cearns, Micah
  • Bojesen, Kirsten B.
  • Pantelis, Christos
  • Stefanis, Nikos
  • Stefanatou, Pentagiotissa
  • Koutsouleris, Nikolaos
  • Vlachos, Ilias
  • Selakovic, Mirjana
  • Sigvard, Anne M.
  • Kollias, Costas
  • Kosteletos, Ioannis
  • Nianiakas, Nikolaos
  • Dimitrakopoulos, Stefanos
  • Meritt, Toni
  • Triantafyllou, Theoni F.
  • Glenthøj, Birte Y.
  • Ermiliou, Vanessa
  • Psarra, Evaggelia
  • Nielsen, Mette Ø.
  • Ebdrup, Bjørn H.
  • Sørensen, Mikkel E.
  • Tangmose, Karen
  • Ralli, Irene
  • Foteli, Stefania
  • Xenaki, Lida-Alkisti
  • Ambrosen, Karen S.
  • Hatzimanolis, Alex
  • Mantonakis, Leonidas
  • Syeda, Warda
  • Ntigridaki, Aggeliki
  • Voulgaraki, Marina
  • Soldatos, Rigas
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Validated clinical prediction models of short-term remission in psychosis are lacking. Our aim was to develop a clinical prediction model aimed at predicting 4−6-week remission following a first episode of psychosis.</jats:p></jats:sec><jats:sec><jats:title>Method</jats:title><jats:p>Baseline clinical data from the Athens First Episode Research Study was used to develop a Support Vector Machine prediction model of 4-week symptom remission in first-episode psychosis patients using repeated nested cross-validation. This model was further tested to predict 6-week remission in a sample of two independent, consecutive Danish first-episode cohorts.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Of the 179 participants in Athens, 120 were male with an average age of 25.8 years and average duration of untreated psychosis of 32.8 weeks. 62.9% were antipsychotic-naïve. Fifty-seven percent attained remission after 4 weeks. In the Danish cohort, 31% attained remission. Eleven clinical scale items were selected in the Athens 4-week remission cohort. These included the Duration of Untreated Psychosis, Personal and Social Performance Scale, Global Assessment of Functioning and eight items from the Positive and Negative Syndrome Scale. This model significantly predicted 4-week remission status (area under the receiver operator characteristic curve (ROC-AUC) = 71.45, P &amp;lt; .0001). It also predicted 6-week remission status in the Danish cohort (ROC-AUC = 67.74, P &amp;lt; .0001), demonstrating reliability.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>Using items from common and validated clinical scales, our model significantly predicted early remission in patients with first-episode psychosis. Although replicated in an independent cohort, forward testing between machine learning models and clinicians’ assessment should be undertaken to evaluate the possible utility as a routine clinical tool.</jats:p></jats:sec>

Topics
  • size-exclusion chromatography
  • machine learning