Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luca, Andrea Di

  • Google
  • 2
  • 11
  • 95

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 20193D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering35citations
  • 2016Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration60citations

Places of action

Chart of shared publication
Moroni, Lorenzo
2 / 43 shared
Dolatshahi-Pirouz, Alireza
1 / 19 shared
Carrow, James K.
1 / 3 shared
Gaharwar, Akhilesh K.
1 / 5 shared
Longoni, Alessia
1 / 2 shared
Lorenzo-Moldero, Ivan
1 / 2 shared
Mota, Carlos
1 / 27 shared
Criscenti, Giuseppe
1 / 3 shared
Van Blitterswijk, Clemens A.
1 / 21 shared
Vancso, Julius
1 / 4 shared
Klein-Gunnewiek, Michel
1 / 2 shared
Chart of publication period
2019
2016

Co-Authors (by relevance)

  • Moroni, Lorenzo
  • Dolatshahi-Pirouz, Alireza
  • Carrow, James K.
  • Gaharwar, Akhilesh K.
  • Longoni, Alessia
  • Lorenzo-Moldero, Ivan
  • Mota, Carlos
  • Criscenti, Giuseppe
  • Van Blitterswijk, Clemens A.
  • Vancso, Julius
  • Klein-Gunnewiek, Michel
OrganizationsLocationPeople

article

3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering

  • Moroni, Lorenzo
  • Dolatshahi-Pirouz, Alireza
  • Carrow, James K.
  • Gaharwar, Akhilesh K.
  • Luca, Andrea Di
Abstract

Additive manufacturing (AM) has shown promise in designing 3D scaffold for regenerative medicine. However, many synthetic biomaterials used for AM are bioinert. Here, we report synthesis of bioactive nanocomposites from a poly(ethylene oxide terephthalate) (PEOT)/poly(butylene terephthalate) (PBT) (PEOT/PBT) copolymer and 2D nanosilicates for fabricating 3D scaffolds for bone tissue engineering. PEOT/PBT have been shown to support calcification and bone bonding ability in vivo, while 2D nanosilicates induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) in absence of osteoinductive agents. The effect of nanosilicates addition to PEOT/PBT on structural, mechanical and biological properties is investigated. Specifically, the addition of nanosilicate to PEOT/PBT improves the stability of nanocomposites in physiological conditions, as nanosilicate suppressed the degradation rate of copolymer. However, no significant increase in the mechanical stiffness of scaffold due to the addition of nanosilicates is observed. The addition of nanosilicates to PEOT/PBT improves the bioactive properties of AM nanocomposites as demonstrated in vitro. hMSCs readily proliferated on the scaffolds containing nanosilicates and resulted in significant upregulation of osteo-related proteins and production of mineralized matrix. The synergistic ability of nanosilicates and PEOT/PBT can be utilized for designing bioactive scaffolds for bone tissue engineering.

Topics
  • nanocomposite
  • impedance spectroscopy
  • copolymer
  • biomaterials
  • additive manufacturing