Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Loucks, Robert

  • Google
  • 1
  • 2
  • 331

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020New Magmatic Oxybarometer Using Trace Elements in Zircon331citations

Places of action

Chart of shared publication
Henriquez, Gonzalo J.
1 / 1 shared
Fiorentini, Marco
1 / 8 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Henriquez, Gonzalo J.
  • Fiorentini, Marco
OrganizationsLocationPeople

article

New Magmatic Oxybarometer Using Trace Elements in Zircon

  • Henriquez, Gonzalo J.
  • Fiorentini, Marco
  • Loucks, Robert
Abstract

We derive a novel method for determining the oxidation state of a magma as zircon crystallised, with a standard error of ±0.6 log unit ƒO2, using ratios of Ce, U, and Ti in zircon, without explicit determination of the ionic charge of any of them, and without independent determination of crystallisation temperature or pressure or parental melt composition. It yields results in good agreement with oxybarometry on Fe-Ti oxide phenocrysts and hornblende phenocrysts quenched in eruptive I- and A-type dacites and rhyolites, but our zircon oxybarometer is also applicable to slowly cooled plutonic rocks and applicable to detrital and xenocrystic zircons. Zircon/melt partition coefficients of Ce and U vary oppositely with ƒO2 variation in the silicate melt. The Ce/U ratio in zircon also varies with the Ce/U element ratio in the silicate melt. During mafic-to-felsic magmatic differentiation, Ce and U are incorporated mainly in calcium-dominated lattice sites of clinopyroxene, hornblende, apatite, and occasionally titanite and/or allanite, all of which have a similar degree of preference for Ce over U. We employ the U/Ti ratio in zircon and in silicate melt as a magmatic differentiation index. Convergent- and divergent-plate-margin differentiation series consistently follow the relation log (Ce/U) ≈ –0.5 log (U/Ti) + C´ in silicate melts of basaltic to rhyolitic composition. That correlation permits thermodynamic derivation of the oxybarometry relation among those elements in zircon: log ƒO■(@2(sample)) –log ƒO■(@2(FMQ))≈4/(2n+1)log [(Ce/√(U■(@i)×Ti)■(z@ )]+C, wherein Ui denotes age-corrected initial U content, FMQ represents the reference buffer fayalite + magnetite + quartz, and n varies with the average valence of uranium in the zircon’s parental silicate melt. We empirically calibrate this relation, using 1042 analysed zircons in 85 natural populations having independently constrained log ƒO2 in the range FMQ–4.9 to FMQ+2.9, to obtain the equation: log ƒO2(sample)) –log ƒO2(FMQ))=3.99 (±0.12)×log [(Ce/√(U×Ti))]+2.28 (±0.10■(@1)) with a correlation coefficient R = 0.963 and standard error of 0.6 log unit ƒO2 in calc-alkalic, tholeiitic, adakitic, and shoshonitic, metaluminous to mildly peraluminous and mildly peralkaline melts in the composition range from kimberlite to rhyolite. Thermodynamic assessment and empirical tests indicate that our formulation is insensitive to varying crystallisation temperature and pressure at lithospheric conditions. We present a revised equation for Ti-in-zircon thermometry that accounts appropriately for pressure as well as reduced activity of TiO2 and SiO2 in rutile- and quartz-undersaturated melts.It can be used to retrieve absolute values of ƒO2 from values of ∆FMQ obtained from a zircon analysis.

Topics
  • impedance spectroscopy
  • melt
  • Calcium
  • trace element
  • Uranium