Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Joseph, K.

  • Google
  • 11
  • 50
  • 314

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2022P10.24.A A personalized BRAF mutant glioblastoma with Human2Human<i>ex-vivo</i> cortical culturescitations
  • 2020Conductivity and Photoconductivity of a p-Type Organic Semiconductor under Ultrastrong Coupling77citations
  • 2020The role of dwell hold on the dislocation mechanisms of fatigue in a near alpha titanium alloy67citations
  • 2017Iron phosphate glasses: Bulk properties and atomic scale structure30citations
  • 2011Adhesion and Wettability Characteristics of Chemically Modified Banana Fibre for Composite Manufacturingcitations
  • 2010Dynamic mechanical analysis of oil palm microfibril-reinforced acrylonitrile butadiene rubber composites22citations
  • 2010Dynamic mechanical properties of oil palm microfibril-reinforced natural rubber composites85citations
  • 2010Oil palm microcomposites: Processing and mechanical behavior17citations
  • 2007The role of interface modification on the mechanical properties of injection-moulded composites from commingled polypropylene/banana granules16citations
  • 2003The thermal and crystallisation studies of short sisal fibre reinforced polypropylene compositescitations
  • 2003Dynamic mechanical properties of short sisal fibre reinforced polypropylene compositescitations

Places of action

Chart of shared publication
Zhang, J.
1 / 62 shared
Beck, J.
1 / 9 shared
Ravi, V. M.
1 / 1 shared
Heiland, D. H.
1 / 1 shared
Schnell, O.
1 / 1 shared
W., Ebbesen T.
1 / 1 shared
Kumar, A.
1 / 94 shared
Ciuti, C.
1 / 5 shared
Genet, C.
1 / 1 shared
W., Hosseini M.
1 / 2 shared
George, J.
1 / 5 shared
Jouaiti, A.
1 / 2 shared
Thomas, A.
1 / 15 shared
Bartolo, N.
1 / 1 shared
Azzini, S.
1 / 4 shared
Nagarajan, K.
1 / 1 shared
Chervy, T.
1 / 1 shared
Devaux, E.
1 / 9 shared
Lindley, Tc
1 / 3 shared
Joseph, S.
4 / 9 shared
Dye, D.
1 / 58 shared
Govindan Kutty, K. V.
1 / 1 shared
Hyatt, N. C.
1 / 24 shared
Jolley, K.
1 / 1 shared
Vasudeva Rao, P. R.
1 / 1 shared
Asuvathraman, R.
1 / 1 shared
Dube, C. L.
1 / 1 shared
Gandy, A. S.
1 / 8 shared
Smith, R.
1 / 26 shared
Stennett, M. C.
1 / 17 shared
Indira, K. N.
1 / 1 shared
Baley, Christophe
1 / 61 shared
Pothen, L. A.
2 / 2 shared
Thomas, S.
7 / 47 shared
Grohens, Yves
1 / 37 shared
Kenny, José María
3 / 532 shared
Puglia, D.
3 / 111 shared
Sreekumar, P. A.
2 / 3 shared
Appukuttan, S. P.
1 / 1 shared
Lampke, Thomas
1 / 388 shared
Reussmann, T.
1 / 1 shared
Mennig, G.
1 / 2 shared
Paul, S. A.
1 / 1 shared
Mathew, G. D. G.
1 / 1 shared
Pillai, Cks
1 / 1 shared
Groeninckx, Gabriël
2 / 31 shared
Sarkissova, M.
1 / 2 shared
Joseph, Pv
2 / 2 shared
Prasad, Vs
1 / 2 shared
Mathew, G.
1 / 2 shared
Chart of publication period
2022
2020
2017
2011
2010
2007
2003

Co-Authors (by relevance)

  • Zhang, J.
  • Beck, J.
  • Ravi, V. M.
  • Heiland, D. H.
  • Schnell, O.
  • W., Ebbesen T.
  • Kumar, A.
  • Ciuti, C.
  • Genet, C.
  • W., Hosseini M.
  • George, J.
  • Jouaiti, A.
  • Thomas, A.
  • Bartolo, N.
  • Azzini, S.
  • Nagarajan, K.
  • Chervy, T.
  • Devaux, E.
  • Lindley, Tc
  • Joseph, S.
  • Dye, D.
  • Govindan Kutty, K. V.
  • Hyatt, N. C.
  • Jolley, K.
  • Vasudeva Rao, P. R.
  • Asuvathraman, R.
  • Dube, C. L.
  • Gandy, A. S.
  • Smith, R.
  • Stennett, M. C.
  • Indira, K. N.
  • Baley, Christophe
  • Pothen, L. A.
  • Thomas, S.
  • Grohens, Yves
  • Kenny, José María
  • Puglia, D.
  • Sreekumar, P. A.
  • Appukuttan, S. P.
  • Lampke, Thomas
  • Reussmann, T.
  • Mennig, G.
  • Paul, S. A.
  • Mathew, G. D. G.
  • Pillai, Cks
  • Groeninckx, Gabriël
  • Sarkissova, M.
  • Joseph, Pv
  • Prasad, Vs
  • Mathew, G.
OrganizationsLocationPeople

document

P10.24.A A personalized BRAF mutant glioblastoma with Human2Human<i>ex-vivo</i> cortical cultures

  • Zhang, J.
  • Beck, J.
  • Joseph, K.
  • Ravi, V. M.
  • Heiland, D. H.
  • Schnell, O.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Glioblastoma is among the most common primary malignancy with a poor medium survival post-diagnosis. The incredible heterogeneity of glioblastoma highlights its incurable nature. Methods to overcome difficulties leaded by glioblastoma heterogeneity remain to be explored. Here we present our Human2Human personalized autografted BRAF(V600E) mutant glioblastoma model, focusing on the idea of precision. This model, with an inoculation of self-derived glioblastoma cells, can imitate the tumor growth, invasion, metabolism and microenvironmental crosstalk within its “native” microenvironment and allows us to investigate the influence of different chemotherapies on the immunosuppressive tumor microenvironment from each specific individual glioblastoma patient.</jats:p></jats:sec><jats:sec><jats:title>Material and Methods</jats:title><jats:p>Non-neoplastic cortical tissue was obtained from a BRAF(V600E) mutant glioblastoma patient during surgical operation. Tissue was sectioned and inoculated with autografted glioblastoma cells in order to establish the ex-vivo Human2Human personalized brain slice model. Slice viability and tumor growth were monitored throughout the culture period, with and without day-wise refreshed treatments of clinically proved BRAF/MEK inhibitors. Sections were fixed and stained post cultivation. Pathway proteins p-ERK, p-Akt based on BRAF signaling along with markers (TMEM119, Iba-1, CD3, CD68, GFAP and NeuN) for major cell types in the environment were stained. Single Nuclei RNA Sequencing and Spatially Resolved Transcriptomics were applied.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Tumor growth quantification over the culture period revealed different tumor reaction and tolerance towards various chemotherapies. The combination of Vemurafenib + Trametinib exhibited more efficient therapy response in comparison with either Dabrafenib + Trametinib or Encorafenib + Trametinib. Immunofluorescence and immunohistochemistry based quantification referring to neurons (NeuN), astrocytes (GFAP) and microglia/macrophage cells (Iba-1) suggested no toxic effects of the drug combinations on the tumor microenvironment. BRAF pathway proteins and immune cells showed various activation patterns upon different treatment combinations on an immunofluorescence base. Single Nuclei RNA Sequencing revealed the mesenchymal differentiation of BRAF mutant glioblastoma cells. Spatially Resolved Transcriptomics characterized tumor recurrence and suggested the therapy response accurately and visually.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>The combination of Vemurafenib + Trametinib shows strategy to this specific BRAF mutant glioblastoma patient. And therefore, this Human2Human personalized model has a potential to provide in-depth information of the spatio-temporal tumor differentiation ex-vivo, correct inter-patient bias, and model therapy response in a very short time frame to provide drug testing results for clinical decision making.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • activation
  • size-exclusion chromatography