Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baus, V.

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022OS10.5.A Modeling immunocompetent tumor microenvironment in glioblastoma patient-derived orthotopic xenograftscitations

Places of action

Chart of shared publication
Yabo, Y. A.
1 / 2 shared
Poli, A.
1 / 1 shared
Golebiewska, A.
1 / 2 shared
Niclou, S. P.
1 / 2 shared
Klein, E.
1 / 3 shared
Michelucci, A.
1 / 2 shared
Oudin, A.
1 / 4 shared
Moreno-Sanchez, P. M.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Yabo, Y. A.
  • Poli, A.
  • Golebiewska, A.
  • Niclou, S. P.
  • Klein, E.
  • Michelucci, A.
  • Oudin, A.
  • Moreno-Sanchez, P. M.
OrganizationsLocationPeople

article

OS10.5.A Modeling immunocompetent tumor microenvironment in glioblastoma patient-derived orthotopic xenografts

  • Yabo, Y. A.
  • Poli, A.
  • Golebiewska, A.
  • Niclou, S. P.
  • Klein, E.
  • Michelucci, A.
  • Oudin, A.
  • Baus, V.
  • Moreno-Sanchez, P. M.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>To date, glioblastoma (GBM) remains a fatal disease, with a median overall survival of roughly over a year. There is a crucial need of new treatment options, yet most clinical trials have failed partly due to the lack of predictive preclinical model systems. Currently, most patient-derived preclinical models suffer from the reduction or absence of immune system components, which represents a bottleneck for adequate immunotherapy testing. Humanized mice offer new opportunities here, since they rebuild an adaptive human immune system in a NSG mouse. Derivation of glioblastoma patient-derived orthotopic xenografts (PDOXs) in humanized mice appears thus as a promising tool for testing new treatment strategies targeting the tumor microenvironment (TME).</jats:p></jats:sec><jats:sec><jats:title>Material and Methods</jats:title><jats:p>We derived PDOXs through intracranial implantation of GBM primary organoids in different immunocompromised mouse strains (Nude, NOD/SCID, NSG). To introduce back the adaptive human immune system, GBM PDOXs were further derived in human CD34+ hematopoietic stem cell-engrafted NSG (HU-CD34+) mice. We applied single-cell RNA-sequencing, multicolor flow cytometry, immunohistochemical analyses and functional studies to examine the heterogeneous TME in a cohort of GBM PDOX models. We further interrogated the contribution and crosstalk between the human and mouse components constituting the brain TME in HU-CD34+ PDOXs.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We show that glioma PDOXs can be derived in mice of different background including Nude, NOD-SCID, NSG and HU-CD34+ mice. Mouse-derived TME created in PDOX models contains tumor-associated macrophages (TAMs) known as major immuno-suppressive components of human GBM tumors. We further show that PDOXs derived in HU-CD34+ NSG mice present human CD45+ immune cells in the bone marrow and blood. Interestingly, we detect an influx of human immune cells in tumors developed in the mouse brain, which interact with the brain-derived immunosuppressive TME of mouse origin.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>We here provide a thorough characterization of the heterogeneous brain TME created in GBM PDOX models. We show that human GBM can instruct mouse-derived brain cells towards immune-suppressive TME. The missing adaptive immune component can be introduced by derivation of GBM PDOXs in humanized mice. Such immunocompetent in vivo models will be important for testing novel therapies targeting different immune components in GBM.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • size-exclusion chromatography