Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Drake, Andrew J.

  • Google
  • 1
  • 10
  • 124

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018A new physical interpretation of optical and infrared variability in quasars124citations

Places of action

Chart of shared publication
Jun, Hyunsung D.
1 / 1 shared
Lang, Dustin
1 / 1 shared
Meisner, Aaron M.
1 / 1 shared
Assef, Roberto J.
1 / 1 shared
Ford, K. E. Saavik
1 / 1 shared
Graham, Matthew
1 / 1 shared
Stern, Daniel
1 / 4 shared
Ross, Nicholas P.
1 / 1 shared
Dey, Arjun
1 / 2 shared
Mckernan, Barry
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Jun, Hyunsung D.
  • Lang, Dustin
  • Meisner, Aaron M.
  • Assef, Roberto J.
  • Ford, K. E. Saavik
  • Graham, Matthew
  • Stern, Daniel
  • Ross, Nicholas P.
  • Dey, Arjun
  • Mckernan, Barry
OrganizationsLocationPeople

article

A new physical interpretation of optical and infrared variability in quasars

  • Jun, Hyunsung D.
  • Lang, Dustin
  • Drake, Andrew J.
  • Meisner, Aaron M.
  • Assef, Roberto J.
  • Ford, K. E. Saavik
  • Graham, Matthew
  • Stern, Daniel
  • Ross, Nicholas P.
  • Dey, Arjun
  • Mckernan, Barry
Abstract

Changing-look quasars are a recently identified class of active galaxies in which the strong UV continuum and/or broad optical hydrogen emission lines associated with unobscured quasars either appear or disappear on time-scales of months to years. The physical processes responsible for this behaviour are still debated, but changes in the black hole accretion rate or accretion disc structure appear more likely than changes in obscuration. Here, we report on four epochs of spectroscopy of SDSS J110057.70-005304.5, a quasar at a redshift of z = 0.378 whose UV continuum and broad hydrogen emission lines have faded, and then returned over the past ≈20 yr. The change in this quasar was initially identified in the infrared, and an archival spectrum from 2010 shows an intermediate phase of the transition during which the flux below rest frame ≈3400 Å has decreased by close to an order of magnitude. This combination is unique compared to previously published examples of changing-look quasars, and is best explained by dramatic changes in the innermost regions of the accretion disc. The optical continuum has been rising since mid-2016, leading to a prediction of a rise in hydrogen emission-line flux in the next year. Increases in the infrared flux are beginning to follow, delayed by a ∼3 yr observed time-scale. If our model is confirmed, the physics of changing-look quasars are governed by processes at the innermost stable circular orbit around the black hole, and the structure of the innermost disc. The easily identifiable and monitored changing-look quasars would then provide a new probe and laboratory of the nuclear central engine....

Topics
  • impedance spectroscopy
  • phase
  • Hydrogen