People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shimizu, Ikkoh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2019Dust scaling relations in a cosmological simulationcitations
- 2019Dust scaling relations in a cosmological simulation
- 2018Cosmological simulation with dust formation and destructioncitations
- 2018Populating H<SUB>2</SUB> and CO in galaxy simulation with dust evolutioncitations
- 2017Evolution of dust extinction curves in galaxy simulationcitations
- 2017Galaxy simulation with dust formation and destructioncitations
Places of action
Organizations | Location | People |
---|
article
Evolution of dust extinction curves in galaxy simulation
Abstract
To understand the evolution of extinction curve, we calculate the dust evolution in a galaxy using smoothed particle hydrodynamic simulations incorporating stellar dust production, dust destruction in supernova shocks, grain growth by accretion and coagulation, and grain disruption by shattering. The dust species are separated into carbonaceous dust and silicate. The evolution of grain size distribution is considered by dividing grain population into large and small grains, which allows us to estimate extinction curves. We examine the dependence of extinction curves on the position, gas density and metallicity in the galaxy, and find that extinction curves are flat at t ≲ 0.3 Gyr because stellar dust production dominates the total dust abundance. The 2175 Å bump and far-ultraviolet (FUV) rise become prominent after dust growth by accretion. At t ≳ 3 Gyr, shattering works efficiently in the outer disc and low-density regions, so extinction curves show a very strong 2175 Å bump and steep FUV rise. The extinction curves at t ≳ 3 Gyr are consistent with the Milky Way extinction curve, which implies that we successfully included the necessary dust processes in the model. The outer disc component caused by stellar feedback has an extinction curve with a weaker 2175 Å bump and flatter FUV slope. The strong contribution of carbonaceous dust tends to underproduce the FUV rise in the Small Magellanic Cloud extinction curve, which supports selective loss of small carbonaceous dust in the galaxy. The snapshot at young ages also explains the extinction curves in high-redshift quasars....