Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ghirlanda, G.

  • Google
  • 1
  • 21
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Accessing the population of high-redshift Gamma Ray Bursts43citations

Places of action

Chart of shared publication
Osborne, J. P.
1 / 5 shared
Mereghetti, S.
1 / 4 shared
Burlon, D.
1 / 3 shared
Campana, S.
1 / 3 shared
Piro, L.
1 / 2 shared
Covino, S.
1 / 2 shared
Frontera, F.
1 / 2 shared
Davanzo, P.
1 / 1 shared
Amati, L.
1 / 2 shared
Bernardini, M. G.
1 / 1 shared
Tanvir, N.
1 / 2 shared
Vergani, S. D.
1 / 2 shared
Willingale, D.
1 / 1 shared
Tagliaferri, G.
1 / 8 shared
Melandri, Andrea
1 / 1 shared
Götz, D.
1 / 5 shared
Nava, L.
1 / 1 shared
Ghisellini, G.
1 / 1 shared
Obrien, P.
1 / 8 shared
Salvaterra, R.
1 / 1 shared
Basa, S.
1 / 5 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Osborne, J. P.
  • Mereghetti, S.
  • Burlon, D.
  • Campana, S.
  • Piro, L.
  • Covino, S.
  • Frontera, F.
  • Davanzo, P.
  • Amati, L.
  • Bernardini, M. G.
  • Tanvir, N.
  • Vergani, S. D.
  • Willingale, D.
  • Tagliaferri, G.
  • Melandri, Andrea
  • Götz, D.
  • Nava, L.
  • Ghisellini, G.
  • Obrien, P.
  • Salvaterra, R.
  • Basa, S.
OrganizationsLocationPeople

article

Accessing the population of high-redshift Gamma Ray Bursts

  • Osborne, J. P.
  • Mereghetti, S.
  • Burlon, D.
  • Campana, S.
  • Piro, L.
  • Covino, S.
  • Frontera, F.
  • Davanzo, P.
  • Amati, L.
  • Bernardini, M. G.
  • Tanvir, N.
  • Vergani, S. D.
  • Willingale, D.
  • Tagliaferri, G.
  • Melandri, Andrea
  • Götz, D.
  • Nava, L.
  • Ghisellini, G.
  • Obrien, P.
  • Salvaterra, R.
  • Ghirlanda, G.
  • Basa, S.
Abstract

Gamma Ray Bursts (GRBs) are a powerful probe of the high-redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and γ-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (E<SUB>peak</SUB>-L<SUB>iso</SUB>) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2-5 keV energy band reaching a sensitivity, corresponding to a fluence, of ̃10<SUP>-8</SUP> erg cm<SUP>-2</SUP> is expected to detect ≈40 GRBs yr<SUP>-1</SUP> sr<SUP>-1</SUP> at z ≥ 5 (≈3 GRBs yr<SUP>-1</SUP> sr<SUP>-1</SUP> at z ≥ 10). Once high-z GRBs are detected the principal issue is to secure their redshift. To this aim we estimate their NIR afterglow flux at relatively early times and evaluate the effectiveness of following them up and construct usable samples of events with any forthcoming GRB mission dedicated to explore the high-z Universe....

Topics
  • impedance spectroscopy