Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Budaj, Ján

  • Google
  • 2
  • 5
  • 34

Slovak Academy of Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets34citations
  • 2012Day-Night Side Cooling of a Strongly Irradiated Giant Planetcitations

Places of action

Chart of shared publication
Hubeny, I.
1 / 1 shared
Salmeron, R.
1 / 1 shared
Kocifaj, M.
1 / 1 shared
Hubeny, Ivan
1 / 3 shared
Burrows, Adam
1 / 3 shared
Chart of publication period
2015
2012

Co-Authors (by relevance)

  • Hubeny, I.
  • Salmeron, R.
  • Kocifaj, M.
  • Hubeny, Ivan
  • Burrows, Adam
OrganizationsLocationPeople

article

Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets

  • Hubeny, I.
  • Salmeron, R.
  • Kocifaj, M.
  • Budaj, Ján
Abstract

There has been growing observational evidence for the presence of condensates in the atmospheres and/or comet-like tails of extrasolar planets. As a result, systematic and homogeneous tables of dust properties are useful in order to facilitate further observational and theoretical studies. In this paper we present calculations and analysis of non-isotropic phase functions, asymmetry parameter (mean cosine of the scattering angle), absorption and scattering opacities, single scattering albedos, equilibrium temperatures, and radiative accelerations of dust grains relevant for extrasolar planets. Our assumptions include spherical grain shape, Deirmendjian particle size distribution, and Mie theory. We consider several species: corundum/alumina, perovskite, olivines with 0 and 50 per cent iron content, pyroxenes with 0, 20, and 60 per cent iron content, pure iron, carbon at two different temperatures, water ice, liquid water, and ammonia. The presented tables cover the wavelength range of 0.2-500 μm and modal particle radii from 0.01 to 100 μm. Equilibrium temperatures and radiative accelerations assume irradiation by a non-blackbody source of light with temperatures from 7000 to 700 K seen at solid angles from 2π to 10<SUP>-6</SUP> sr. The tables are provided to the community together with a simple code which allows for an optional, finite, angular dimension of the source of light (star) in the phase function....

Topics
  • perovskite
  • Carbon
  • grain
  • phase
  • theory
  • iron
  • isotropic