Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Charlton, Jane

  • Google
  • 2
  • 11
  • 52

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015HST/COS detection of a Ne VIII absorber towards PG 1407+265: an unambiguous tracer of collisionally ionized hot gas?24citations
  • 2013Discovery of the Transition of a Mini-broad Absorption Line into a Broad Absorption Line in the SDSS Quasar J115122.14+020426.328citations

Places of action

Chart of shared publication
Srianand, R.
1 / 3 shared
Muzahid, S.
1 / 1 shared
Pathak, A.
1 / 2 shared
Narayanan, A.
1 / 3 shared
Hussain, T.
1 / 14 shared
Wakker, B. P.
1 / 2 shared
Nestor, Daniel
1 / 1 shared
Murphy, Michael T.
1 / 1 shared
Hamann, Fred
1 / 1 shared
Eracleous, Michael
1 / 1 shared
Rodríguez Hidalgo, Paola
1 / 1 shared
Chart of publication period
2015
2013

Co-Authors (by relevance)

  • Srianand, R.
  • Muzahid, S.
  • Pathak, A.
  • Narayanan, A.
  • Hussain, T.
  • Wakker, B. P.
  • Nestor, Daniel
  • Murphy, Michael T.
  • Hamann, Fred
  • Eracleous, Michael
  • Rodríguez Hidalgo, Paola
OrganizationsLocationPeople

article

HST/COS detection of a Ne VIII absorber towards PG 1407+265: an unambiguous tracer of collisionally ionized hot gas?

  • Srianand, R.
  • Muzahid, S.
  • Pathak, A.
  • Narayanan, A.
  • Charlton, Jane
  • Hussain, T.
  • Wakker, B. P.
Abstract

We report the detection of Ne VIII in a z<SUB>abs</SUB> = 0.599 61 absorber towards the QSO PG1407+265 (z<SUB>em</SUB>= 0.94). Besides Ne VIII, absorption from H I Lyman series lines (H I λ1025-λ915), several other low (C II, N II, O II and S II), intermediate (C III, N III, N IV, O III, S IV and S V) and high (S VI, O VI and Ne VIII) ionization metal lines are detected. Disparity in the absorption line kinematics between different ions implies that the absorbing gas comprises of multiple ionization phases. The low and the intermediate ions (except S V) trace a compact (∼410 pc), metal-rich (Z ∼ Z<SUB>☉</SUB>) and overdense (log n<SUB>H</SUB> ∼ -2.6) photoionized region that sustained star formation for a prolonged period. The high ions, Ne VIII and O VI, can be explained as arising in a low density (-5.3 ≤ log n<SUB>H</SUB> ≤ -5.0), metal-rich (Z ≳ Z<SUB>☉</SUB>) and diffuse (∼180 kpc) photoionized gas. The S V, S VI and C IV [detected in the Faint Object Spectrograph (FOS) spectrum] require an intermediate photoionization phase with -4.2 &lt; log n<SUB>H</SUB> &lt; -3.5. Alternatively, a pure collisional ionization model, as used to explain the previous known Ne VIII absorbers, with 5.65 &lt; log T &lt; 5.72, can reproduce the S VI, O VI and Ne VIII column densities simultaneously in a single phase. However, even such models require an intermediate phase to reproduce any observable S V and/or C IV. Therefore, we conclude that when multiple phases are present, the presence of Ne VIII is not necessarily an unambiguous indication of collisionally ionized hot gas....

Topics
  • density
  • impedance spectroscopy
  • phase