Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chieffi, Alessandro

  • Google
  • 7
  • 41
  • 236

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2015Supernova dust formation and the grain growth in the early universe: the critical metallicity for low-mass star formation43citations
  • 2015The metal and dust yields of the first massive stars54citations
  • 2014Dust grain growth and the formation of the extremely primitive star SDSS J102915+17292731citations
  • 2014The Origin of the Most Iron-poor Star47citations
  • 2013Growth of Dust Grains in a Low-Metallicity Gas and its Effect on the Cloud Fragmentationcitations
  • 2009Sulfur in the globular clusters <ASTROBJ>47 Tucanae</ASTROBJ> and <ASTROBJ>NGC 6752</ASTROBJ>11citations
  • 2008The Peculiar Type Ib Supernova 2006jc: A WCO Wolf-Rayet Star Explosion50citations

Places of action

Chart of shared publication
Chiaki, Gen
3 / 3 shared
Nozawa, Takaya
3 / 9 shared
Schneider, Raffaella
4 / 12 shared
Marassi, Stefania
2 / 3 shared
Omukai, Kazuyuki
3 / 5 shared
Limongi, Marco
4 / 5 shared
Yoshida, Naoki
3 / 7 shared
Bianchi, Simone
2 / 6 shared
Bocchio, Marco
1 / 1 shared
Limongi, M.
3 / 3 shared
Omukai, K.
1 / 1 shared
Nozawa, T.
2 / 6 shared
Schneider, R.
1 / 39 shared
Yoshida, N.
1 / 1 shared
Marassi, S.
1 / 1 shared
Chiaki, G.
1 / 1 shared
Sbordone, L.
1 / 2 shared
Bonifacio, P.
1 / 2 shared
Caffau, E.
1 / 1 shared
Ludwig, H. -G.
1 / 1 shared
Kozasa, T.
1 / 3 shared
Gurugubelli, U. K.
1 / 1 shared
Kaneda, H.
1 / 4 shared
Minezaki, T.
1 / 4 shared
Sahu, D. K.
1 / 1 shared
Yoshii, Y.
1 / 4 shared
Deng, J.
1 / 4 shared
Wada, T.
1 / 9 shared
Nomoto, K.
1 / 2 shared
Tanabé, T.
1 / 2 shared
Tominaga, N.
1 / 2 shared
Ohyama, Y.
1 / 2 shared
Anupama, G. C.
1 / 1 shared
Tanaka, M.
1 / 18 shared
Kawabata, K. S.
1 / 1 shared
Onaka, T.
1 / 2 shared
Sakon, I.
1 / 3 shared
Maeda, K.
1 / 4 shared
Suzuki, T.
1 / 19 shared
Prabhu, T. P.
1 / 1 shared
Tornambe, A.
1 / 1 shared
Chart of publication period
2015
2014
2013
2009
2008

Co-Authors (by relevance)

  • Chiaki, Gen
  • Nozawa, Takaya
  • Schneider, Raffaella
  • Marassi, Stefania
  • Omukai, Kazuyuki
  • Limongi, Marco
  • Yoshida, Naoki
  • Bianchi, Simone
  • Bocchio, Marco
  • Limongi, M.
  • Omukai, K.
  • Nozawa, T.
  • Schneider, R.
  • Yoshida, N.
  • Marassi, S.
  • Chiaki, G.
  • Sbordone, L.
  • Bonifacio, P.
  • Caffau, E.
  • Ludwig, H. -G.
  • Kozasa, T.
  • Gurugubelli, U. K.
  • Kaneda, H.
  • Minezaki, T.
  • Sahu, D. K.
  • Yoshii, Y.
  • Deng, J.
  • Wada, T.
  • Nomoto, K.
  • Tanabé, T.
  • Tominaga, N.
  • Ohyama, Y.
  • Anupama, G. C.
  • Tanaka, M.
  • Kawabata, K. S.
  • Onaka, T.
  • Sakon, I.
  • Maeda, K.
  • Suzuki, T.
  • Prabhu, T. P.
  • Tornambe, A.
OrganizationsLocationPeople

article

Dust grain growth and the formation of the extremely primitive star SDSS J102915+172927

  • Chieffi, Alessandro
  • Chiaki, Gen
  • Nozawa, Takaya
  • Schneider, Raffaella
  • Omukai, Kazuyuki
  • Limongi, Marco
  • Yoshida, Naoki
Abstract

Dust grains in low-metallicity star-forming regions may be responsible for the formation of the first low-mass stars. The minimal conditions to activate dust-induced fragmentation require the gas to be pre-enriched above a critical dust-to-gas mass ratio D_cr = [2.6-6.3] × 10^{-9}. The recently discovered Galactic halo star SDSS J102915+172927 has a stellar mass of 0.8 M<SUB>☉</SUB> and a metallicity of Z ̃ 4.5 × 10<SUP>-5</SUP> Z<SUB>☉</SUB> and represents an optimal candidate for the dust-induced low-mass star formation. Indeed, the critical dust-to-gas mass ratio can be overcome provided that at least 0.4 M<SUB>☉</SUB> of dust condenses in Pop III supernova ejecta, allowing for moderate destruction by the reverse shock. Here, we show that grain growth during the collapse of the parent gas cloud is sufficiently rapid to activate dust cooling and fragmentation into low-mass stars, even if dust formation in the first supernovae is less efficient or strong dust destruction does occur. We find that carbon grains do not experience grain growth because at densities below n<SUB>H</SUB> ̃ 10<SUP>6</SUP> cm<SUP>-3</SUP> carbon atoms are locked into CO molecules. Silicates and magnetite grains accrete gas-phase species in the density range 10<SUP>9</SUP> 〈 n<SUB>H</SUB> 〈 10<SUP>12</SUP> cm<SUP>-3</SUP>, until their gas-phase abundance drops to zero, reaching condensation efficiencies ≈1. The corresponding increase in the dust-to-gas mass ratio allows dust-induced cooling and fragmentation to be activated at 10<SUP>12</SUP> 〈 n<SUB>H</SUB> 〈 10<SUP>14</SUP> cm<SUP>-3</SUP>, before the collapsing cloud becomes optically thick to continuum radiation.

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • grain
  • phase
  • laser emission spectroscopy
  • forming
  • grain growth