Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Spinoglio, Luigi

  • Google
  • 4
  • 44
  • 846

National Institute for Astrophysics

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2015Linking dust emission to fundamental properties in galaxies: the low-metallicity picture154citations
  • 2014Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range622citations
  • 2014The Herschel exploitation of local galaxy Andromeda (HELGA) - V. Strengthening the case for substantial interstellar grain growth35citations
  • 2010Anomalous Silicate Dust Emission in the Type 1 Liner Nucleus of M8135citations

Places of action

Chart of shared publication
Karczewski, O. Ł.
2 / 2 shared
Galametz, M.
2 / 7 shared
Baes, M.
3 / 12 shared
Jones, A. P.
1 / 12 shared
Ciesla, L.
1 / 3 shared
Galliano, F.
2 / 8 shared
Cortese, L.
1 / 11 shared
Lebouteiller, V.
2 / 5 shared
De Looze, I.
2 / 13 shared
Madden, S. C.
2 / 7 shared
Boselli, A.
2 / 4 shared
Lu, N.
1 / 2 shared
Doublier-Pritchard, V.
2 / 2 shared
Rémy-Ruyer, A.
2 / 2 shared
Cormier, D.
2 / 4 shared
Bendo, G. J.
2 / 4 shared
Cooray, A.
1 / 3 shared
Asano, R. S.
1 / 2 shared
Hughes, T.
1 / 3 shared
Delooze, I.
1 / 1 shared
Takeuchi, T. T.
1 / 4 shared
Boquien, M.
1 / 3 shared
Bocchio, M.
1 / 3 shared
Jones, A.
1 / 13 shared
Zhukovska, S.
1 / 1 shared
Mattsson, L.
1 / 3 shared
Gentile, G.
1 / 5 shared
Fritz, J.
1 / 1 shared
Gomez, H. L.
1 / 8 shared
Andersen, A. C.
1 / 1 shared
Smith, M. W. L.
1 / 6 shared
Viaene, S.
1 / 3 shared
Marengo, M.
1 / 6 shared
Zezas, A.
1 / 1 shared
Wu, Y. L.
1 / 1 shared
Willner, S.
1 / 1 shared
Ashby, M. L. N.
1 / 3 shared
Fazio, G. G.
1 / 3 shared
Huang, J. -S.
1 / 2 shared
Smith, Howard A.
1 / 2 shared
Köhler, M.
1 / 10 shared
Li, Aigen
1 / 1 shared
Li, M. P.
1 / 1 shared
Wang, Z.
1 / 99 shared
Chart of publication period
2015
2014
2010

Co-Authors (by relevance)

  • Karczewski, O. Ł.
  • Galametz, M.
  • Baes, M.
  • Jones, A. P.
  • Ciesla, L.
  • Galliano, F.
  • Cortese, L.
  • Lebouteiller, V.
  • De Looze, I.
  • Madden, S. C.
  • Boselli, A.
  • Lu, N.
  • Doublier-Pritchard, V.
  • Rémy-Ruyer, A.
  • Cormier, D.
  • Bendo, G. J.
  • Cooray, A.
  • Asano, R. S.
  • Hughes, T.
  • Delooze, I.
  • Takeuchi, T. T.
  • Boquien, M.
  • Bocchio, M.
  • Jones, A.
  • Zhukovska, S.
  • Mattsson, L.
  • Gentile, G.
  • Fritz, J.
  • Gomez, H. L.
  • Andersen, A. C.
  • Smith, M. W. L.
  • Viaene, S.
  • Marengo, M.
  • Zezas, A.
  • Wu, Y. L.
  • Willner, S.
  • Ashby, M. L. N.
  • Fazio, G. G.
  • Huang, J. -S.
  • Smith, Howard A.
  • Köhler, M.
  • Li, Aigen
  • Li, M. P.
  • Wang, Z.
OrganizationsLocationPeople

article

The Herschel exploitation of local galaxy Andromeda (HELGA) - V. Strengthening the case for substantial interstellar grain growth

  • Mattsson, L.
  • De Looze, I.
  • Gentile, G.
  • Baes, M.
  • Spinoglio, Luigi
  • Fritz, J.
  • Gomez, H. L.
  • Andersen, A. C.
  • Smith, M. W. L.
  • Viaene, S.
Abstract

In this paper, we consider the implications of the distributions of dust and metals in the disc of M31. We derive mean radial dust distributions using a dust map created from Herschel images of M31 sampling the entire far-infrared peak. Modified blackbodies are fit to approximately 4000 pixels with a varying, as well as a fixed, dust emissivity index (β). An overall metal distribution is also derived using data collected from the literature. We use a simple analytical model of the evolution of the dust in a galaxy with dust contributed by stellar sources and interstellar grain growth, and fit this model to the radial dust-to-metals distribution across the galaxy. Our analysis shows that the dust-to-gas gradient in M31 is steeper than the metallicity gradient, suggesting interstellar dust growth is (or has been) important in M31. We argue that M31 helps build a case for cosmic dust in galaxies being the result of substantial interstellar grain growth, while the net dust production from stars may be limited. We note, however, that the efficiency of dust production in stars, e.g. in supernovae ejecta and/or stellar atmospheres, and grain destruction in the interstellar medium may be degenerate in our simple model. We can conclude that interstellar grain growth by accretion is likely at least as important as stellar dust production channels in building the cosmic dust component in M31....

Topics
  • impedance spectroscopy
  • grain
  • grain growth