Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Beri, Aru

  • Google
  • 1
  • 7
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023AstroSat and NuSTAR observations of XTE J1739-285 during the 2019-2020 outburst10citations

Places of action

Chart of shared publication
Andersson, Nils
1 / 3 shared
Roy, Pinaki
1 / 1 shared
Celora, Thomas
1 / 1 shared
Sharma, Rahul
1 / 15 shared
Gaur, Vishal
1 / 1 shared
Gittins, Fabian
1 / 2 shared
Altamirano, Diego
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Andersson, Nils
  • Roy, Pinaki
  • Celora, Thomas
  • Sharma, Rahul
  • Gaur, Vishal
  • Gittins, Fabian
  • Altamirano, Diego
OrganizationsLocationPeople

article

AstroSat and NuSTAR observations of XTE J1739-285 during the 2019-2020 outburst

  • Andersson, Nils
  • Roy, Pinaki
  • Celora, Thomas
  • Sharma, Rahul
  • Gaur, Vishal
  • Beri, Aru
  • Gittins, Fabian
  • Altamirano, Diego
Abstract

We report results from a study of XTE J1739-285, a transient neutron star low mass X-ray binary observed with AstroSat and NuSTAR during its 2019-2020 outburst. We detected accretion-powered X-ray pulsations at 386 Hz during very short intervals (0.5-1 s) of X-ray flares. These flares were observed during the 2019 observation of XTE J1739-285. During this observation, we also observed a correlation between intensity and hardness ratios, suggesting an increase in hardness with the increase in intensity. Moreover, a thermonuclear X-ray burst detected in our AstroSat observation during the 2020 outburst revealed the presence of coherent burst oscillations at 383 Hz during its decay phase. The frequency drift of 3 Hz during X-ray burst can be explained with r modes. Thus, making XTE J1739-285 belong to a subset of NS-LMXBs which exhibit both nuclear- and accretion-powered pulsations. The power density spectrum created using the AstroSat-laxpc observations in 2020 showed the presence of a quasi-periodic oscillation at ∼0.83 Hz. Our X-ray spectroscopy revealed significant changes in the spectra during the 2019 and 2020 outburst. We found a broad iron line emission feature in the X-ray spectrum during the 2020 observation, while this feature was relatively narrow and has a lower equivalent width in 2019, when the source was accreting at higher rates than 2020. Hard X-ray tail was observed during the 2019 observations, indicating the presence of non-thermal component in the X-ray spectra.

Topics
  • density
  • phase
  • hardness
  • iron
  • X-ray spectroscopy