Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boduch, P.

  • Google
  • 1
  • 4
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022On the synthesis of N–O bearing species in astrophysical ices – an infrared spectroscopic study using heavy-ion irradiation of solid N2:CO samples3citations

Places of action

Chart of shared publication
Dasilveira, E. F.
1 / 1 shared
Domaracka, A.
1 / 3 shared
Barros, Ana
1 / 2 shared
Rothard, H.
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Dasilveira, E. F.
  • Domaracka, A.
  • Barros, Ana
  • Rothard, H.
OrganizationsLocationPeople

article

On the synthesis of N–O bearing species in astrophysical ices – an infrared spectroscopic study using heavy-ion irradiation of solid N2:CO samples

  • Dasilveira, E. F.
  • Domaracka, A.
  • Barros, Ana
  • Boduch, P.
  • Rothard, H.
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>The interstellar chemistry of nitrogen is considerably less understood than the chemistry of other common elements, such as carbon and oxygen. Even though a relatively large number of species containing nitrogen atoms have already been detected in the interstellar medium, only six of them bear a nitrogen–oxygen (N–O) bond. Some astrophysical and primeval Earth models suggest that N–O species, such as hydroxylamine (NH2OH), are potential precursors of prebiotic amino acids, and even peptides. In this work, we have analyzed an apolar ice mixture of N2:CO of astrophysical interest to investigate possible formation mechanisms of N–O bearing molecules due to processing of the sample by 64Ni24+ 538 MeV ions (8.4 MeV/u) at 14 K. The results show the formation of simple nitrogen oxides ($ {N_{1 - 2}}{O_y})$, but no CN–O species of any kind. We have also determined the formation cross-sections of some of the products, as well as the destruction cross-sections of precursors and products. The results presented here are discussed in light of our previous work on the processing of a NH3:CO ice mixture, which have found no N–O bearing molecules at all.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • Oxygen
  • laser emission spectroscopy
  • Nitrogen
  • ion chromatography