Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mathew, Essyrose

  • Google
  • 3
  • 8
  • 81

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 20223D bioprinted scaffolds for diabetic wound healing applications44citations
  • 2022Stereolithography 3D printed implants: a preliminary investigation as potential local drug delivery systems to the ear30citations
  • 2022Fused deposition modeling 3D printing proof of concept study for personalised inner ear therapy7citations

Places of action

Chart of shared publication
Lamprou, Dimitrios A.
3 / 22 shared
Magee, Erin
1 / 1 shared
Glover, Katie
1 / 1 shared
Pitzanti, Giulia
2 / 3 shared
Dorati, Rossella
1 / 5 shared
Triacca, Alessandro
1 / 1 shared
Conti, Bice
1 / 6 shared
Haddow, Oisin
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lamprou, Dimitrios A.
  • Magee, Erin
  • Glover, Katie
  • Pitzanti, Giulia
  • Dorati, Rossella
  • Triacca, Alessandro
  • Conti, Bice
  • Haddow, Oisin
OrganizationsLocationPeople

article

Fused deposition modeling 3D printing proof of concept study for personalised inner ear therapy

  • Mathew, Essyrose
  • Lamprou, Dimitrios A.
  • Haddow, Oisin
Abstract

Objectives<br/>There is a requirement within ear therapeutics for a delivery system capable of safely delivering controlled doses to the inner ear. However, the anatomy and sensitivity of the inner ear make current delivery systems problematic and often ineffective. Therefore, a new delivery system is required to overcome these issues and provide a more efficacious system in the treatment of inner ear disease. This study assesses the potential of 3D printing (3DP) as a fabrication method for an implantable drug delivery system (DDS) to the inner ear.<br/><br/>Key findings<br/>Three implantable designs of varying geometry were produced with fused deposition modelling (FDM) 3DP, each loaded with 0.25%, 0.5% and 1% levofloxacin; filaments prepared by hot-melt extrusion. Each implant was effective in providing sustained, therapeutic release of levofloxacin for at least 4 days and as such would be effective in therapeutic treatment of many common inner ear diseases, such as otitis media or Ménière’s disease.<br/><br/>Conclusions<br/>This proof-of-concept research was successful in utilising FDM as a fabrication method for a DDS capable of providing prolonged release directly to the inner ear and highlights the viability of 3DP in the fabrication of an inner ear DDS.<br/><br/>

Topics
  • Deposition
  • impedance spectroscopy
  • melt
  • melt extrusion