Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guo, Yanan

  • Google
  • 4
  • 21
  • 68

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Toward reciprocal feedback between computational design, engineering, and fabrication to co-design coreless filament-wound structures6citations
  • 2023Data processing, analysis, and evaluation methods for co-design of coreless filament-wound building systems7citations
  • 2022Integrative material and structural design methods for natural fibres filament-wound composite structures29citations
  • 2011Mutual diffusion and microstructure evolution at the electrolyte−anode interface in intermediate temperature solid oxide fuel cell26citations

Places of action

Chart of shared publication
Middendorf, Peter
2 / 21 shared
Zechmeister, Christoph
2 / 7 shared
Bischoff, Manfred
2 / 4 shared
Knippers, Jan
3 / 15 shared
Mindermann, Pascal
2 / 10 shared
Menges, Achim
2 / 7 shared
Weiskopf, Daniel
1 / 1 shared
Yang, Xiliu
1 / 1 shared
Abdelaal, Moataz
1 / 1 shared
Gresser, Götz Theodor
2 / 3 shared
Schwieger, Volker
2 / 2 shared
Hügle, Sebastian
2 / 2 shared
Forster, David
2 / 3 shared
Kannenberg, Fabian
2 / 2 shared
Balangé, Laura
2 / 2 shared
Pérez, Marta Gil
3 / 11 shared
Zou, Jin
1 / 26 shared
Miyayama, Masaru
1 / 7 shared
Drennan, John
1 / 7 shared
Mori, Toshiyuki
1 / 5 shared
Li, Zhi-Peng
1 / 7 shared
Chart of publication period
2024
2023
2022
2011

Co-Authors (by relevance)

  • Middendorf, Peter
  • Zechmeister, Christoph
  • Bischoff, Manfred
  • Knippers, Jan
  • Mindermann, Pascal
  • Menges, Achim
  • Weiskopf, Daniel
  • Yang, Xiliu
  • Abdelaal, Moataz
  • Gresser, Götz Theodor
  • Schwieger, Volker
  • Hügle, Sebastian
  • Forster, David
  • Kannenberg, Fabian
  • Balangé, Laura
  • Pérez, Marta Gil
  • Zou, Jin
  • Miyayama, Masaru
  • Drennan, John
  • Mori, Toshiyuki
  • Li, Zhi-Peng
OrganizationsLocationPeople

article

Data processing, analysis, and evaluation methods for co-design of coreless filament-wound building systems

  • Middendorf, Peter
  • Zechmeister, Christoph
  • Bischoff, Manfred
  • Knippers, Jan
  • Mindermann, Pascal
  • Menges, Achim
  • Guo, Yanan
  • Gresser, Götz Theodor
  • Schwieger, Volker
  • Hügle, Sebastian
  • Forster, David
  • Kannenberg, Fabian
  • Balangé, Laura
  • Pérez, Marta Gil
Abstract

<jats:title>Abstract</jats:title><jats:p>The linear design workflow for structural systems, involving a multitude of iterative loops and specialists, obstructs disruptive innovations. During design iterations, vast amounts of data in different reference systems, origins, and significance are generated. This data is often not directly comparable or is not collected at all, which implies a great unused potential for advancements in the process. In this paper, a novel workflow to process and analyze the data sets in a unified reference frame is proposed. From this, differently sophisticated iteration loops can be derived. The developed methods are presented within a case study using coreless filament winding as an exemplary fabrication process within an architectural context. This additive manufacturing process, using fiber-reinforced plastics, exhibits great potential for efficient structures when its intrinsic parameter variations can be minimized. The presented method aims to make data sets comparable by identifying the steps each data set needs to undergo (acquisition, pre-processing, mapping, post-processing, analysis, and evaluation). These processes are imperative to provide the means to find domain interrelations, which in the future can provide quantitative results that will help to inform the design process, making it more reliable, and allowing for the reduction of safety factors. The results of the case study demonstrate the data set processes, proving the necessity of these methods for the comprehensive inter-domain data comparison.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • additive manufacturing