People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mulholland, Anthony J.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2021Modelling of ultrasonic waves in layered elastic heterogeneous materialscitations
- 2020Effective Grain Orientation Mapping of Complex and Locally Anisotropic Media for Improved Imaging in Ultrasonic Non-Destructive Testingcitations
- 2019Analysis of a fractal ultrasonic transducer with a range of piezoelectric length scalescitations
- 2018Linear ultrasonic array design using cantor set fractal geometrycitations
- 2018Broadband 1-3 piezoelectric composite transducer design using Sierpinski Gasket fractal geometrycitations
- 2017Renormalisation analysis of a composite ultrasonic transducer with a fractal architecturecitations
- 2017Pipe organ air-coupled broad bandwidth transducer
- 2017A weak-inertia mathematical model of bubble growth in a polymer foamcitations
- 2017A nonlinear elasticity approach to modelling the collapse of a shelled microbubblecitations
- 2017Linear ultrasonic array incorporating a Cantor Set fractal element configuration
- 2016Investigating the performance of a fractal ultrasonic transducer under varying system conditionscitations
- 2016Improving the operational bandwidth of a 1-3 piezoelectric composite transducer using Sierpinski Gasket fractal geometry
- 2015Dynamical model of an oscillating shelled microbubble
- 2015System modeling and device development for passive acoustic monitoring of a particulate-liquid processcitations
- 2015A finite element approach to modelling fractal ultrasonic transducerscitations
- 2015A model-based approach to crack sizing with ultrasonic arrayscitations
- 2015A Composite Ultrasonic Transducer with a Fractal Architecture
- 2012Ultrasonic wave propagation in heterogenous media
- 2012The use of fractal geometry in the design of piezoelectric ultrasonic transducerscitations
- 2010Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layerscitations
- 2010An electrostatic ultrasonic transducer incorporating resonating conduits
- 2009Theoretical analysis of ultrasonic vibration spectra from multiple particle-plate impactscitations
- 2009Estimating particle concentration using passive ultrasonic measurement of impact vibrationscitations
- 2009The causal differential scattering approach to calculating the effective properties of random composite materials with a particle size distribution
- 2008Harmonic analysis of lossy piezoelectric composite transducers using the plane wave expansion methodcitations
- 2008Analysis of ultrasonic transducers with fractal architecturecitations
- 2008Enhancing the performance of piezoelectric ultrasound transducers by the use of multiple matching layerscitations
- 2008Particle sizing using passive ultrasonic measurement of particle-wall impact vibrationscitations
- 2007Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducerscitations
- 2000Wave propagation in 0-3/3-3 connectivity composites with complex microstructurecitations
Places of action
Organizations | Location | People |
---|
article
A nonlinear elasticity approach to modelling the collapse of a shelled microbubble
Abstract
There is considerable interest in using shelled microbubbles as a transportation mechanism for localised drug delivery, specifically in the treatment of various cancers. In this paper a theoretical model is proposed which predicts the dynamics of an oscillating shelled microbubble. A neo-Hookean, compressible strain energy density function is used to model the potential energy per unit volume of the shell. The shell is stressed by applying a series of small radially directed stress steps to the inner surface of the shell whilst the outer surface is traction free. Once a certain radial deformation is reached, the stress load at the inner radius is switched off causing the shell to collapse and oscillate about its equilibrium (stress free) position. The inflated shell configuration is used as an initial condition to model the time evolving collapse phase of the shell. The collapse phase is modelled by applying the momentum balance law and mass conservation. The dynamical model which results is then used to predict the collapse time of the shelled microbubble as it oscillates about its equilibrium position. A linear approximation is used in order to gain analytical insight into both the quasistatic inflationary and the oscillating phases of the shelled microbubble. Results from the linearised model are then analysed which show the influence of the shell's thickness, Poisson ratio and shear modulus on the rate of oscillation of the shelled microbubble. The nonlinear model for the quasistatic state is solved numerically and compared to the linearised quasistatic solution. At present, there is no solution to the nonlinear collapsed state. This is a future area of research for the current authors.