Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mikesell, Thomas Dylan

  • Google
  • 3
  • 3
  • 20

Norwegian Geotechnical Institute

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Propagating speedups during quiescence escalate to the 2020–2021 surge of Sít’ Kusá, southeast Alaska6citations
  • 2022Monte Carlo simulations of coupled body- and Rayleigh-wave multiple scattering in elastic media7citations
  • 2019Methods to isolate retrograde and prograde Rayleigh-wave signals7citations

Places of action

Chart of shared publication
Margerin, Ludovic
1 / 4 shared
Xu, Zongbo
1 / 4 shared
Gribler, Gabriel
1 / 1 shared
Chart of publication period
2024
2022
2019

Co-Authors (by relevance)

  • Margerin, Ludovic
  • Xu, Zongbo
  • Gribler, Gabriel
OrganizationsLocationPeople

article

Monte Carlo simulations of coupled body- and Rayleigh-wave multiple scattering in elastic media

  • Mikesell, Thomas Dylan
  • Margerin, Ludovic
  • Xu, Zongbo
Abstract

Seismic coda waves are commonly used in estimation of subsurface Q values and monitoring subsurface changes. Coda waves mainly consist of multiply scattered body and surface waves. These two types of waves interact with each other in the multiple scattering process, which thus leads to a spatiotemporal evolution of the body and surface wave energies. One cannot characterize the evolution because one has not fully understood the multiple scattering of the two types of waves. Thus one commonly assumes only one type of waves exists or ignores their interaction while studying the coda waves. However, neglecting the interaction leads to an incorrect energy evolution of the two types of waves and consequently biases the Q estimation or interpretation of coda wave changes for monitoring. To better understand the interaction between these waves during multiple scattering and to model the energy evolution correctly, we propose a Monte Carlo algorithm to model the multiple scattering process. We describe the physics of the scattering for the two types of waves and derive scattering properties like cross sections for perturbations in elastic properties (e.g. density, shear modulus and Lamé parameters). Our algorithm incorporates this knowledge and thus physically models the body- and surface wave energy evolution in space and time. The energy partitioning ratios between surface and body waves provided by our algorithm match the theoretical prediction based on equipartition theory. In the equipartition state, our simulation results also match Lambert's cosine law for body waves on the free surface. We discuss how the Rayleigh-to-body-wave scattering affects the energy partitioning ratios. Our algorithm provides a new tool to study multiple scattering and coda waves in elastic media with a free surface....

Topics
  • density
  • surface
  • theory
  • simulation