People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hamer, Mark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
A non-exercise testing method for estimating cardiorespiratory fitness: Associations with all-cause and cardiovascular mortality in a pooled analysis of eight population-based cohorts
Abstract
AIMS: <br/><br/>Cardiorespiratory fitness (CRF) is a key predictor of chronic disease, particularly cardiovascular disease (CVD), but its assessment usually requires exercise testing which is impractical and costly in most health-care settings. Non-exercise testing cardiorespiratory fitness (NET-F)-estimating methods are a less resource-demanding alternative, but their predictive capacity for CVD and total mortality has yet to be tested. The objective of this study is to examine the association of a validated NET-F algorithm with all-cause and CVD mortality.<br/><br/>METHODS AND RESULTS: <br/><br/>The participants were 32,319 adults (14,650 men) aged 35-70 years who took part in eight Health Survey for England and Scottish Health Survey studies between 1994 and 2003. Non-exercise testing cardiorespiratory fitness (a metabolic equivalent of VO2max) was calculated using age, sex, body mass index (BMI), resting heart rate, and self-reported physical activity. We followed participants for mortality until 2008. Two thousand one hundred and sixty-five participants died (460 cardiovascular deaths) during a mean 9.0 [standard deviation (SD) = 3.6] year follow-up. After adjusting for potential confounders including diabetes, hypertension, smoking, social class, alcohol, and depression, a higher fitness score according to the NET-F was associated with a lower risk of mortality from all-causes (hazard ratio per SD increase in NET-F 0.85, 95% confidence interval: 0.78-0.93 in men; 0.88, 0.80-0.98 in women) and CVD (men: 0.75, 0.63-0.90; women: 0.73, 0.60-0.92). Non-exercise testing cardiorespiratory fitness had a better discriminative ability than any of its components (CVD mortality c-statistic: NET-F = 0.70-0.74; BMI = 0.45-0.59; physical activity = 0.60-0.64; resting heart rate = 0.57-0.61). The sensitivity of the NET-F algorithm to predict events occurring in the highest risk quintile was better for CVD (0.49 in both sexes) than all-cause mortality (0.44 and 0.40 for men and women, respectively). The specificity for all-cause and CVD mortality ranged between 0.80 and 0.82. The net reclassification improvement of CVD mortality risk (vs. a standardized aggregate score of the modifiable components of NET-F) was 27.2 and 21.0% for men and women, respectively.<br/><br/>CONCLUSION: <br/><br/>The CRF-estimating method NET-F that does not involve exercise testing showed consistent associations with all-cause and cardiovascular mortality, and it had good discrimination and excellent risk reclassification improvement. As such, it merits further attention as a practical and potentially and useful risk prediction tool.<br/>