Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ali, Hazrat

  • Google
  • 2
  • 5
  • 9

University of Stirling

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Improving Human Action Recognition Using Hierarchical Features And Multiple Classifier Ensembles9citations
  • 2014Variant Molar Mass and Concentration Effect of Polyethylene Glycol over the Physico-Chemical Behaviour of CTAB and SDScitations

Places of action

Chart of shared publication
Durrani, Gulrez Fatima
1 / 1 shared
Niazi, Ayesha
1 / 1 shared
Khan, Aftab Ahmad
1 / 1 shared
Ullah, Irfan
1 / 6 shared
Baloch, Musa Kaleem
1 / 2 shared
Chart of publication period
2019
2014

Co-Authors (by relevance)

  • Durrani, Gulrez Fatima
  • Niazi, Ayesha
  • Khan, Aftab Ahmad
  • Ullah, Irfan
  • Baloch, Musa Kaleem
OrganizationsLocationPeople

article

Improving Human Action Recognition Using Hierarchical Features And Multiple Classifier Ensembles

  • Ali, Hazrat
Abstract

<jats:title>Abstract</jats:title><jats:p>This paper presents a simple, fast and efficacious system to promote the human action classification outcome using the depth action sequences. Firstly, the motion history mages (MHIs) and static history images (SHIs) are created from the front (XOY), side (YOZ) and top (XOZ) projected scenes of each depth sequence in a 3D Euclidean space through engaging the 3D Motion Trail Model (3DMTM). Then, the Local Binary Patterns (LBPs) algorithm is operated on the MHIs and SHIs to learn motion and static hierarchical features to represent the action sequence. The motion and static hierarchical feature vectors are then fed into a classifier ensemble to classify action classes, where the ensemble comprises of two classifiers. Thus, each ensemble includes a pair of Kernel-based Extreme Learning Machine (KELM) or ${{l}}_{{2}}$-regularized Collaborative Representation Classifier (${{l}}_{{2}}$-CRC) or Multi-class Support Vector Machine. To extensively assess the framework, we perform experiments on a couple of standard available datasets such as MSR-Action3D, UTD-MHAD and DHA. Experimental consequences demonstrate that the proposed approach gains a state-of-the-art recognition performance in comparison with other available approaches. Several statistical measurements on recognition results also indicate that the method achieves superiority when the hierarchical features are adopted with the KELM ensemble. In addition, to ensure real-time processing capability of the algorithm, the running time of major components is investigated. Based on machine dependency of the running time, the computational complexity of the system is also shown and compared with other methods. Experimental results and evaluation of the computational time and complexity reflect real-time compatibility and feasibility of the proposed system.</jats:p>

Topics
  • impedance spectroscopy
  • experiment