Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Andrillon, Thomas

  • Google
  • 2
  • 6
  • 19

Inserm

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Expectations boost the reconstruction of auditory features from electrophysiological responses to noisy speech14citations
  • 2022Memory loss at sleep onset5citations

Places of action

Chart of shared publication
Koroma, Matthieu
1 / 1 shared
Perera, Ricardo
1 / 7 shared
Kouider, Sid
1 / 1 shared
Oudiette, Delphine
1 / 1 shared
Lacaux, Célia
1 / 1 shared
Arnulf, Isabelle
1 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Koroma, Matthieu
  • Perera, Ricardo
  • Kouider, Sid
  • Oudiette, Delphine
  • Lacaux, Célia
  • Arnulf, Isabelle
OrganizationsLocationPeople

article

Expectations boost the reconstruction of auditory features from electrophysiological responses to noisy speech

  • Koroma, Matthieu
  • Perera, Ricardo
  • Kouider, Sid
  • Andrillon, Thomas
Abstract

<jats:title>Abstract</jats:title><jats:p>Online speech processing imposes significant computational demands on the listening brain, the underlying mechanisms of which remain poorly understood. Here, we exploit the perceptual “pop-out” phenomenon (i.e. the dramatic improvement of speech intelligibility after receiving information about speech content) to investigate the neurophysiological effects of prior expectations on degraded speech comprehension. We recorded electroencephalography (EEG) and pupillometry from 21 adults while they rated the clarity of noise-vocoded and sine-wave synthesized sentences. Pop-out was reliably elicited following visual presentation of the corresponding written sentence, but not following incongruent or neutral text. Pop-out was associated with improved reconstruction of the acoustic stimulus envelope from low-frequency EEG activity, implying that improvements in perceptual clarity were mediated via top-down signals that enhanced the quality of cortical speech representations. Spectral analysis further revealed that pop-out was accompanied by a reduction in theta-band power, consistent with predictive coding accounts of acoustic filling-in and incremental sentence processing. Moreover, delta-band power, alpha-band power, and pupil diameter were all increased following the provision of any written sentence information, irrespective of content. Together, these findings reveal distinctive profiles of neurophysiological activity that differentiate the content-specific processes associated with degraded speech comprehension from the context-specific processes invoked under adverse listening conditions.</jats:p>

Topics