Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lynch, Bryan

  • Google
  • 1
  • 7
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Persistent sodium currents in SCN1A developmental and degenerative epileptic dyskinetic encephalopathy14citations

Places of action

Chart of shared publication
Jones, Laura
1 / 2 shared
Rosch, Richard Ewald
1 / 1 shared
Bassett, Dani S.
1 / 1 shared
King, Mary D.
1 / 1 shared
Ruben, Peter C.
1 / 1 shared
Gorman, Kathleen M.
1 / 1 shared
Peters, Colin H.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Jones, Laura
  • Rosch, Richard Ewald
  • Bassett, Dani S.
  • King, Mary D.
  • Ruben, Peter C.
  • Gorman, Kathleen M.
  • Peters, Colin H.
OrganizationsLocationPeople

article

Persistent sodium currents in SCN1A developmental and degenerative epileptic dyskinetic encephalopathy

  • Jones, Laura
  • Rosch, Richard Ewald
  • Bassett, Dani S.
  • King, Mary D.
  • Ruben, Peter C.
  • Gorman, Kathleen M.
  • Peters, Colin H.
  • Lynch, Bryan
Abstract

Pathogenic variants in the voltage-gated sodium channel gene (SCN1A) are amongst the most common genetic causes of childhood epilepsies. There is considerable heterogeneity in both the types of causative variants and associated phenotypes; a recent expansion of the phenotypic spectrum of SCN1A associated epilepsies now includes an early onset severe developmental and epileptic encephalopathy with regression and a hyperkinetic movement disorder.Herein, we report a female with a developmental and degenerative epileptic-dyskinetic encephalopathy, distinct and more severe than classic Dravet syndrome. Clinical diagnostics indicated a paternally inherited c.5053G>T; p.A1685S variant of uncertain significance in SCN1A. Whole-exome sequencing detected a second de novo mosaic (18%) c.2345G>A; p.T782I likely pathogenic variant in SCN1A (maternal allele). Biophysical characterisation of both mutant channels in a heterologous expression system identified gain-of-function effects in both, with a milder shift in fast inactivation of the p.A1685S channels; and a more severe persistent sodium current in the p.T782I. Using computational models, we show that large persistent sodium currents induce hyperexcitability in individual cortical neurons, thus relating the severe phenotype to the empirically quantified sodium channel dysfunction.These findings further broaden the phenotypic spectrum of SCN1A associated epilepsies and highlight the importance of testing for mosaicism in epileptic encephalopathies. Detailed biophysical evaluation and computational modelling further highlight the role of gain-of-function variants in the pathophysiology of the most severe phenotypes associated with SCN1A.

Topics
  • impedance spectroscopy
  • Sodium