Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kalaskar, Deepak

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021The current progress and critical analysis of three-dimensional scanning and three-dimensional printing applications in breast surgery7citations

Places of action

Chart of shared publication
Singh, S. K.
1 / 2 shared
Mosahebi, A.
1 / 1 shared
Alshehri, S. A.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Singh, S. K.
  • Mosahebi, A.
  • Alshehri, S. A.
OrganizationsLocationPeople

article

The current progress and critical analysis of three-dimensional scanning and three-dimensional printing applications in breast surgery

  • Kalaskar, Deepak
  • Singh, S. K.
  • Mosahebi, A.
  • Alshehri, S. A.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Several attempts have been made to develop a tool capable of evaluating breast shape and volume to aid surgical planning and outcome assessment. More recently, newer technologies such as three-dimensional (3D) scanning and 3D printing have been applied in breast assessment. The aim of this study was to review the literature to assess the applicability of 3D scanning and 3D printing in breast surgery.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>A literature search was carried on PubMed, Google Scholar and OVID from January 2000 to December 2019 using the keywords ‘3D’, ‘Three-dimensional’, ‘Three/four dimensions’ and ‘Breast’.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>A total of 6564 articles were identified initially; the abstracts of 1846 articles were scanned, and 81 articles met the inclusion criteria and were included in this review. Articles were reviewed and classified according to their aims, study subjects, the software and hardware used, main outcomes and major limitations.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>These technologies are fast and easy to use, however, high costs, long processing times and the need for training might limit their application. To incorporate these technologies into standard healthcare, their efficacy and effectiveness must be demonstrated through multiple and rigorous clinical trials.</jats:p></jats:sec>

Topics
  • inclusion
  • size-exclusion chromatography