Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bousounis, Pavlos

  • Google
  • 1
  • 13
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data11citations

Places of action

Chart of shared publication
Crandall, Keith A.
1 / 1 shared
Słowiński, Piotr
1 / 1 shared
Asher, Gabriel
1 / 1 shared
Alomran, Nawaf
1 / 1 shared
Li, Muzi
1 / 2 shared
Prashant, N. M.
1 / 1 shared
Reece-Stremtan, Dacian
1 / 1 shared
Spurr, Liam F.
1 / 1 shared
Zhang, Qianqian
1 / 2 shared
Horvath, Anelia
1 / 1 shared
Tsaneva-Atanasova, Krasimira
1 / 2 shared
Sein, Justin
1 / 1 shared
Liu, Hongyu
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Crandall, Keith A.
  • Słowiński, Piotr
  • Asher, Gabriel
  • Alomran, Nawaf
  • Li, Muzi
  • Prashant, N. M.
  • Reece-Stremtan, Dacian
  • Spurr, Liam F.
  • Zhang, Qianqian
  • Horvath, Anelia
  • Tsaneva-Atanasova, Krasimira
  • Sein, Justin
  • Liu, Hongyu
OrganizationsLocationPeople

article

ReQTL: identifying correlations between expressed SNVs and gene expression using RNA-sequencing data

  • Crandall, Keith A.
  • Słowiński, Piotr
  • Asher, Gabriel
  • Bousounis, Pavlos
  • Alomran, Nawaf
  • Li, Muzi
  • Prashant, N. M.
  • Reece-Stremtan, Dacian
  • Spurr, Liam F.
  • Zhang, Qianqian
  • Horvath, Anelia
  • Tsaneva-Atanasova, Krasimira
  • Sein, Justin
  • Liu, Hongyu
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Motivation</jats:title><jats:p>By testing for associations between DNA genotypes and gene expression levels, expression quantitative trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide variants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA). VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL analyses are computationally feasible and can identify a subset of expressed eQTL loci.</jats:p></jats:sec><jats:sec><jats:title>Availability and implementation</jats:title><jats:p>A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/ReQTL.</jats:p></jats:sec><jats:sec><jats:title>Supplementary information</jats:title><jats:p>Supplementary data are available at Bioinformatics online.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • size-exclusion chromatography