Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fowler, Philip

  • Google
  • 3
  • 10
  • 127

University of Oxford

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Prediction of pyrazinamide resistance in <i>Mycobacterium tuberculosis</i> using structure-based machine-learning approaches5citations
  • 2020Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex71citations
  • 2019DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis51citations

Places of action

Chart of shared publication
Walker, A. Sarah
1 / 1 shared
Walker, Timothy M.
1 / 1 shared
Carter, Joshua J.
1 / 1 shared
Peto, Timothy E. A.
1 / 2 shared
Adlard, Dylan
1 / 1 shared
Lynch, Charlotte I.
1 / 1 shared
Morlock, Glenn P.
1 / 1 shared
Whitfield, Michael
1 / 1 shared
Crook, Derrick W.
1 / 1 shared
Posey, James E.
1 / 1 shared
Chart of publication period
2024
2020
2019

Co-Authors (by relevance)

  • Walker, A. Sarah
  • Walker, Timothy M.
  • Carter, Joshua J.
  • Peto, Timothy E. A.
  • Adlard, Dylan
  • Lynch, Charlotte I.
  • Morlock, Glenn P.
  • Whitfield, Michael
  • Crook, Derrick W.
  • Posey, James E.
OrganizationsLocationPeople

article

DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis

  • Fowler, Philip
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Motivation</jats:title><jats:p>Resistance co-occurrence within first-line anti-tuberculosis (TB) drugs is a common phenomenon. Existing methods based on genetic data analysis of Mycobacterium tuberculosis (MTB) have been able to predict resistance of MTB to individual drugs, but have not considered the resistance co-occurrence and cannot capture latent structure of genomic data that corresponds to lineages.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We used a large cohort of TB patients from 16 countries across six continents where whole-genome sequences for each isolate and associated phenotype to anti-TB drugs were obtained using drug susceptibility testing recommended by the World Health Organization. We then proposed an end-to-end multi-task model with deep denoising auto-encoder (DeepAMR) for multiple drug classification and developed DeepAMR_cluster, a clustering variant based on DeepAMR, for learning clusters in latent space of the data. The results showed that DeepAMR outperformed baseline model and four machine learning models with mean AUROC from 94.4% to 98.7% for predicting resistance to four first-line drugs [i.e. isoniazid (INH), ethambutol (EMB), rifampicin (RIF), pyrazinamide (PZA)], multi-drug resistant TB (MDR-TB) and pan-susceptible TB (PANS-TB: MTB that is susceptible to all four first-line anti-TB drugs). In the case of INH, EMB, PZA and MDR-TB, DeepAMR achieved its best mean sensitivity of 94.3%, 91.5%, 87.3% and 96.3%, respectively. While in the case of RIF and PANS-TB, it generated 94.2% and 92.2% sensitivity, which were lower than baseline model by 0.7% and 1.9%, respectively. t-SNE visualization shows that DeepAMR_cluster captures lineage-related clusters in the latent space.</jats:p></jats:sec><jats:sec><jats:title>Availability and implementation</jats:title><jats:p>The details of source code are provided at http://www.robots.ox.ac.uk/∼davidc/code.php.</jats:p></jats:sec><jats:sec><jats:title>Supplementary information</jats:title><jats:p>Supplementary data are available at Bioinformatics online.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • cluster
  • size-exclusion chromatography
  • susceptibility
  • clustering
  • machine learning