People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hayat, Sikander
RWTH Aachen University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
MACA: marker-based automatic cell-type annotation for single-cell expression data
Abstract
<jats:title>Abstract</jats:title><jats:sec><jats:title>Summary</jats:title><jats:p>Accurately identifying cell types is a critical step in single-cell sequencing analyses. Here, we present marker-based automatic cell-type annotation (MACA), a new tool for annotating single-cell transcriptomics datasets. We developed MACA by testing four cell-type scoring methods with two public cell-marker databases as reference in six single-cell studies. MACA compares favorably to four existing marker-based cell-type annotation methods in terms of accuracy and speed. We show that MACA can annotate a large single-nuclei RNA-seq study in minutes on human hearts with ∼290K cells. MACA scales easily to large datasets and can broadly help experts to annotate cell types in single-cell transcriptomics datasets, and we envision MACA provides a new opportunity for integration and standardization of cell-type annotation across multiple datasets.</jats:p></jats:sec><jats:sec><jats:title>Availability and implementation</jats:title><jats:p>MACA is written in python and released under GNU General Public License v3.0. The source code is available at https://github.com/ImXman/MACA.</jats:p></jats:sec><jats:sec><jats:title>Supplementary information</jats:title><jats:p>Supplementary data are available at Bioinformatics online.</jats:p></jats:sec>