People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Partanen, Jouni
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG compositescitations
- 2024The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG compositescitations
- 2024The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG compositescitations
- 2024The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG compositescitations
- 2023Workplace Exposure Measurements of Emission from Industrial 3D Printingcitations
- 2023Workplace Exposure Measurements of Emission from Industrial 3D Printingcitations
- 2023Workplace Exposure Measurements of Emission from Industrial 3D Printingcitations
- 2023Influence of feature size and shape on corrosion of 316L lattice structures fabricated by laser powder bed fusioncitations
- 2023NiTiCu alloy from elemental and alloyed powders using vat photopolymerization additive manufacturingcitations
- 2021Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) techniquecitations
- 2021Selective Laser Sintering of Lignin-Based Compositescitations
- 2021Selective Laser Sintering of Lignin-Based Compositescitations
- 20213D-Printed Thermoset Biocomposites Based on Forest Residues by Delayed Extrusion of Cold Masterbatch (DECMA)citations
- 2021Mechanical properties and fracture characterization of additive manufacturing polyamide 12 after accelerated weatheringcitations
- 2021Anisotropic plastic behavior of additively manufactured PH1 steelcitations
- 2020Improved Bone Regeneration in Rabbit Bone Defects Using 3D Printed Composite Scaffolds Functionalized with Osteoinductive Factorscitations
- 2019Selective laser melting raw material commoditization : impact on comparative competitiveness of additive manufacturingcitations
- 2019Effect of process parameters on non-modulated Ni-Mn-Ga alloy manufactured using powder bed fusioncitations
- 2019Effect of process parameters on non-modulated Ni-Mn-Ga alloy manufactured using powder bed fusioncitations
- 2019Mechanical properties of ultraviolet-assisted paste extrusion and postextrusion ultraviolet-curing of three-dimensional printed biocompositescitations
- 2018Digital manufacturing applicability of a laser sintered component for automotive industrycitations
- 2018A decision support system for the validation of metal powder bed-based additive manufacturing applicationscitations
- 2018Digital manufacturing applicability of a laser sintered component for automotive industry:a case studycitations
- 2018Digital manufacturing applicability of a laser sintered component for automotive industry: a case studycitations
- 2015Fabrication of graphene-based 3D structures by stereolithographycitations
Places of action
Organizations | Location | People |
---|
article
Workplace Exposure Measurements of Emission from Industrial 3D Printing
Abstract
Particle and gaseous contaminants from industrial scale additive manufacturing (AM) machines were studied in three different work environments. Workplaces utilized powder bed fusion, material extrusion, and binder jetting techniques with metal and polymer powders, polymer filaments, and gypsum powder, respectively. The AM processes were studied from operator’s point of view to identify exposure events and possible safety risks. Total number of particle concentrations were measured in the range of 10 nm to 300 nm from operator’s breathing zone using portable devices and in the range of 2.5 nm to 10 µm from close vicinity of the AM machines using stationary measurement devices. Gas-phase compounds were measured with photoionization, electrochemical sensors, and an active air sampling method which were eventually followed by laboratory analyses. The duration of the measurements varied from 3 to 5 days during which the manufacturing processes were practically continuous. We identified several work phases in which an operator can potentially be exposed by inhalation (pulmonary exposure) to airborne emissions. A skin exposure was also identified as a potential risk factor based on the observations made on work tasks related to the AM process. The results confirmed that nanosized particles were present in the breathing air of the workspace when the ventilation of the AM machine was inadequate. Metal powders were not measured from the workstation air thanks to the closed system and suitable risk control procedures. Still, handling of metal powders and AM materials that can act as skin irritants such as epoxy resins were found to pose a potential risk for workers. This emphasizes the importance of appropriate control measures for ventilation and material handling that should be addressed in AM operations and environment.