Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nayak, Vasudev Vivekanand

  • Google
  • 5
  • 32
  • 64

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 20233D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications—Physicochemical Characterization and In Vitro Evaluation11citations
  • 2023Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Model13citations
  • 2023Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration. 17citations
  • 2022Physiochemical and bactericidal activity evaluation14citations
  • 2021Effect of supplemental acid-etching on the early stages of osseointegration9citations

Places of action

Chart of shared publication
Weck, Marcus
1 / 2 shared
Mijares, Dindo Q.
1 / 1 shared
Pereira, Angel Cabrera
1 / 1 shared
Khan, Doha
1 / 1 shared
Witek, Lukasz
5 / 42 shared
Coelho, Paulo G.
4 / 36 shared
Torroni, Andrea
3 / 13 shared
Tovar, Nick
4 / 14 shared
Durand, Alejandro
1 / 1 shared
Demitchell-Rodriguez, Evellyn M.
1 / 1 shared
Yarholar, Lauren M.
1 / 1 shared
Flores, Roberto L.
1 / 9 shared
Cronstein, Bruce N.
1 / 12 shared
Shen, Chen
1 / 5 shared
Fk, Kasper
1 / 1 shared
Pg, Coelho
1 / 5 shared
Young, S.
1 / 1 shared
Etp, Bergamo
1 / 3 shared
Cm, Runyan
1 / 1 shared
Rl, Flores
1 / 1 shared
Torroni, A.
1 / 2 shared
Bv, Slavin
1 / 1 shared
Atria, Pablo J.
1 / 1 shared
Tonon, Caroline
1 / 1 shared
Panariello, Beatriz H. D.
1 / 1 shared
Duarte, Simone
1 / 1 shared
Hacquebord, Jacques Henri
1 / 1 shared
Bonfante, Estevam A.
1 / 14 shared
Jalkh, Ernesto B. Benalcázar
1 / 7 shared
Parra, Marcelo
1 / 1 shared
Castellano, Arthur
1 / 2 shared
Badalov, Rafael M.
1 / 1 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Weck, Marcus
  • Mijares, Dindo Q.
  • Pereira, Angel Cabrera
  • Khan, Doha
  • Witek, Lukasz
  • Coelho, Paulo G.
  • Torroni, Andrea
  • Tovar, Nick
  • Durand, Alejandro
  • Demitchell-Rodriguez, Evellyn M.
  • Yarholar, Lauren M.
  • Flores, Roberto L.
  • Cronstein, Bruce N.
  • Shen, Chen
  • Fk, Kasper
  • Pg, Coelho
  • Young, S.
  • Etp, Bergamo
  • Cm, Runyan
  • Rl, Flores
  • Torroni, A.
  • Bv, Slavin
  • Atria, Pablo J.
  • Tonon, Caroline
  • Panariello, Beatriz H. D.
  • Duarte, Simone
  • Hacquebord, Jacques Henri
  • Bonfante, Estevam A.
  • Jalkh, Ernesto B. Benalcázar
  • Parra, Marcelo
  • Castellano, Arthur
  • Badalov, Rafael M.
OrganizationsLocationPeople

article

Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration.

  • Nayak, Vasudev Vivekanand
  • Fk, Kasper
  • Pg, Coelho
  • Young, S.
  • Etp, Bergamo
  • Cm, Runyan
  • Witek, Lukasz
  • Rl, Flores
  • Torroni, A.
  • Bv, Slavin
Abstract

Defects characterized as large osseous voids in bone, in certain circumstances, are difficult to treat, requiring extensive treatments which lead to an increased financial burden, pain, and prolonged hospital stays. Grafts exist to aid in bone tissue regeneration (BTR), among which ceramic-based grafts have become increasingly popular due to their biocompatibility and resorbability. BTR using bioceramic materials such as β-tricalcium phosphate has seen tremendous progress and has been extensively used in the fabrication of biomimetic scaffolds through the three-dimensional printing (3DP) workflow. 3DP has hence revolutionized BTR by offering unparalleled potential for the creation of complex, patient, and anatomic location-specific structures. More importantly, it has enabled the production of biomimetic scaffolds with porous structures that mimic the natural extracellular matrix while allowing for cell growth-a critical factor in determining the overall success of the BTR modality. While the concept of 3DP bioceramic bone tissue scaffolds for human applications is nascent, numerous studies have highlighted its potential in restoring both form and function of critically sized defects in a wide variety of translational models. In this review, we summarize these recent advancements and present a review of the engineering principles and methodologies that are vital for using 3DP technology for craniomaxillofacial reconstructive applications. Moreover, we highlight future advances in the field of dynamic 3D printed constructs via shape-memory effect, and comment on pharmacological manipulation and bioactive molecules required to treat a wider range of boney defects.

Topics
  • porous
  • impedance spectroscopy
  • void
  • ceramic
  • biocompatibility