People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miettinen, Susanna
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineeringcitations
- 2024Vat photopolymerization of biomimetic bone scaffolds based on Mg, Sr, Zn-substituted hydroxyapatite : Effect of sintering temperaturecitations
- 2024Boron substitution in silicate bioactive glass scaffolds to enhance bone differentiation and regenerationcitations
- 2024Vat photopolymerization of biomimetic bone scaffolds based on Mg, Sr, Zn-substituted hydroxyapatitecitations
- 2023Improvements in Maturity and Stability of 3D iPSC-Derived Hepatocyte-like Cell Culturescitations
- 2021Retrieval of the conductivity spectrum of tissues in vitro with novel multimodal tomographycitations
- 2020Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based toolscitations
- 2020Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensorscitations
- 2020A tube-source X-ray microtomography approach for quantitative 3D microscopy of optically challenging cell-cultured samplescitations
- 2018Knitted 3D Scaffolds of Polybutylene Succinate Support Human Mesenchymal Stem Cell Growth and Osteogenesiscitations
- 2018Cell response to round and star-shaped polylactide fibers
- 2016Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithographycitations
- 2016Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineeringcitations
- 2016UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffoldscitations
- 2013Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiationcitations
- 2010Oil Induced Swelling in Thermoelastic Materials
- 2010Porous polylactide/beta-tricalcium phosphate composite scaffolds for tissue engineering applicationscitations
- 2009Calcium phosphate surface treatment of bioactive glass causes a delay in early osteogenic differentiation of adipose stem cellscitations
- 2009Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiationcitations
Places of action
Organizations | Location | People |
---|
article
Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering
Abstract
<p>Growing number of musculoskeletal defects increases the demand for engineered tendon. Our aim was to find an efficient strategy to produce tendon-like matrix in vitro. To allow efficient differentiation of human adipose stem cells (hASCs) toward tendon tissue, we tested different medium compositions, biomaterials, and scaffold structures in preliminary tests. This is the first study to report that medium supplementation with 50 ng/mL of growth and differentiation factor-5 (GDF-5) and 280 mu M l-ascorbic acid are essential for tenogenic differentiation of hASCs. Tenogenic medium (TM) was shown to significantly enhance tendon-like matrix production of hASCs compared to other tested media groups. Cell adhesion, proliferation, and tenogenic differentiation of hASCs were supported on braided poly(l/d)lactide (PLA) 96l/4d copolymer filament scaffolds in TM condition compared to foamed poly(l-lactide-co-e-caprolactone) (PLCL) 70L/30CL scaffolds. A uniform cell layer formed on braided PLA 96/4 scaffolds when hASCs were cultured in TM compared to maintenance medium (MM) condition after 14 days of culture. Furthermore, total collagen content and gene expression of tenogenic marker genes were significantly higher in TM condition after 2 weeks of culture. The elastic modulus of PLA 96/4 scaffold was more similar to the elastic modulus reported for native Achilles tendon. Our study showed that the optimized TM is needed for efficient and rapid in vitro tenogenic extracellular matrix production of hASCs. PLA 96/4 scaffolds together with TM significantly stimulated hASCs, thus demonstrating the potential clinical relevance of this novel and emerging approach to tendon injury treatments in the future.</p>