Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Day, Ian N. W.

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Population mutation scanning of human GHR by meltMADGE and identification of a paucimorphic variantcitations

Places of action

Chart of shared publication
Chen, Xiao-He
1 / 1 shared
Sayer, Avan Aihie
1 / 1 shared
Dennison, Elaine M.
1 / 3 shared
Hou, Guangwei
1 / 1 shared
Alharbi, Khalid K.
1 / 1 shared
Syddall, Holly E.
1 / 1 shared
Gaunt, Tom R.
1 / 1 shared
Cooper, Cyrus
1 / 3 shared
Phillips, David I. W.
1 / 1 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Chen, Xiao-He
  • Sayer, Avan Aihie
  • Dennison, Elaine M.
  • Hou, Guangwei
  • Alharbi, Khalid K.
  • Syddall, Holly E.
  • Gaunt, Tom R.
  • Cooper, Cyrus
  • Phillips, David I. W.
OrganizationsLocationPeople

article

Population mutation scanning of human GHR by meltMADGE and identification of a paucimorphic variant

  • Chen, Xiao-He
  • Sayer, Avan Aihie
  • Dennison, Elaine M.
  • Hou, Guangwei
  • Alharbi, Khalid K.
  • Syddall, Holly E.
  • Gaunt, Tom R.
  • Cooper, Cyrus
  • Phillips, David I. W.
  • Day, Ian N. W.
Abstract

Current studies of human genetic diversity are focused in two areas: first, detection of rare mutations in highly selected clinical cases; and second, in common single-nucleotide polymorphism (SNP) and haplotype effects in the general population. Less frequent SNPs and "paucimorphisms" remain underexplored, although lower frequency coding SNPs are more likely to have functional impact. We have developed a cost-efficient mutation scanning technology, meltMADGE, for population mutation scanning. Previous research in GHR has explored its role in extreme (-3 SD) growth retardation and, subsequently, "moderate" (-2 SD) growth retardation cases. Here, we describe meltMADGE assays for the entire coding region of GHR. As a first step we have established long polymerase chain reaction subbanks for GHR from 2423 unselected subjects and have applied meltMADGE scanning assays of exons 4 and 5 to these subbanks. A novel paucimorphism present at 439+30A&gt;C (allele frequency: 0.0021) in intron 5 (location chr5:42,695,221 in GRCh37/hg19) was identified in 10 individuals, confirmed by sequencing and analysis made for major phenotypic effects. This approach is relevant to the deep sampling of populations for less frequent sequence diversity, some of which is expected to exert significant phenotypic effects.<br/><br/>

Topics
  • impedance spectroscopy
  • laser emission spectroscopy