People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Machado, Miguel A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Evaluation of self-sensing material behaviourcitations
- 2024Microscale channels produced by micro friction stir channeling (μFSC)citations
- 2024Enabling electrical response through piezoelectric particle integration in AA2017-T451 aluminium parts using FSP technologycitations
- 2024Mechanical behavior of friction stir butt welded joints under different loading and temperature conditionscitations
- 2023Self-sensing metallic material based on piezoelectric particlescitations
- 2023Granting Sensorial Properties to Metal Parts through Friction Stir Processingcitations
- 2023Self-sensing metallic material based on PZT particles produced by friction stir processing envisaging structural health monitoring applicationscitations
- 2023Self-sensing metallic material based on PZT particles produced by friction stir processing envisaging structural health monitoring applicationscitations
- 2021Benchmarking of Nondestructive Testing for Additive Manufacturingcitations
- 2019Contactless high-speed eddy current inspection of unidirectional carbon fiber reinforced polymercitations
- 2019Evaluation of Different Non-destructive Testing Methods to Detect Imperfections in Unidirectional Carbon Fiber Composite Ropescitations
Places of action
Organizations | Location | People |
---|
article
Benchmarking of Nondestructive Testing for Additive Manufacturing
Abstract
<p>Defect detection in additive manufacturing (AM) is of paramount importance to improve the reliability of products. Nondestructive testing is not yet widely used for defect detection. The main challenges are a lack of standards and methods, the types and location of defects, and the complex geometry of many parts. During selective laser melting (SLM), several types of defects can occur such as porosity, cracking, and lack of fusion. In this study, several nondestructive tests were conducted in a highly complex shaped part in AISI 316L stainless steel with real defects manufactured by SLM. Two additional artificial defects (one horizontal and one flat bottom hole) were produced and the defect detectability was evaluated. The techniques used were as follows: dye penetrant, infrared thermography, immersion ultrasonic, eddy current, and X-ray microcomputed tomography to assess different types of defects in the as-built part. We conclude that no single technique can detect every type of defect, although multiple techniques provide complementary and redundant information to critically evaluate the integrity of the parts. This approach is fundamental for improving the reliability of defect detection, which will help expand the potential for using AM to produce parts for critical structural applications. </p>