Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Tianyi

  • Google
  • 2
  • 9
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Humidity response of a capacitive sensor based on auxeticity of carbon nanotube-paper composites9citations
  • 2017Crack nucleation in variational phase-field models of brittle fracturecitations

Places of action

Chart of shared publication
Mamishev, Alexander V.
1 / 1 shared
Sakthivelpathi, Vigneshwar
1 / 1 shared
Dichiara, Anthony B.
1 / 2 shared
Goodman, Sheila M.
1 / 2 shared
Qian, Zhongjie
1 / 1 shared
Maurini, Corrado
1 / 5 shared
Tanné, Erwan
1 / 1 shared
Marigo, J.-J
1 / 1 shared
Bourdin, Blaise
1 / 2 shared
Chart of publication period
2022
2017

Co-Authors (by relevance)

  • Mamishev, Alexander V.
  • Sakthivelpathi, Vigneshwar
  • Dichiara, Anthony B.
  • Goodman, Sheila M.
  • Qian, Zhongjie
  • Maurini, Corrado
  • Tanné, Erwan
  • Marigo, J.-J
  • Bourdin, Blaise
OrganizationsLocationPeople

article

Humidity response of a capacitive sensor based on auxeticity of carbon nanotube-paper composites

  • Mamishev, Alexander V.
  • Sakthivelpathi, Vigneshwar
  • Dichiara, Anthony B.
  • Li, Tianyi
  • Goodman, Sheila M.
  • Qian, Zhongjie
Abstract

<jats:title>Abstract</jats:title><jats:p>Auxetic materials showing a negative Poisson’s ratio can offer unusual sensing capabilities due to drastic percolation changes. This study presents the capacitive response of wet-fractured carbon nanotube paper composites in exposure to humidity. A strained composite strip is fractured to produce numerous cantilevers consisting of cellulose fibers coated with carbon nanotubes. During stretching, the thin composite buckles in the out-of-plane direction, which causes auxetic behavior to generate the radially structured electrodes. The crossbar junctions forming among the fractured electrodes significantly increase capacitance and its response to humidity as a function of sensor widths. The molecular junctions switch electric characteristics between predominantly resistive- and capacitive elements. The resulting capacitive response is characterized for humidity sensing without the need for an additional absorption medium. The normalized capacitance change (ΔC/C<jats:sub>0</jats:sub>) exhibits a sensitivity of 0.225 within the range of 40 ∼ 80% relative humidity. The novel auxetic behavior of a water-printed paper-based nanocomposite paves the way for inexpensive humidity and sweat sensors.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • nanotube
  • forming
  • cellulose