People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Leung, Chu Lun Alex
University College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024An in situ imaging investigation of the effect of gas flow rates on directed energy depositioncitations
- 2024Pore evolution mechanisms during directed energy deposition additive manufacturingcitations
- 2024Pore evolution mechanisms during directed energy deposition additive manufacturing
- 2024AM-SegNet for additive manufacturing in situ X-ray image segmentation and feature quantification
- 2024Correlative spatter and vapour depression dynamics during laser powder bed fusion of an Al-Fe-Zr alloycitations
- 2024Characterisation of materials properties and defects in structure fabricated via additive friction stir deposition
- 2023In situ correlative observation of humping-induced cracking in directed energy deposition of nickel-based superalloys
- 2022Quantification of Interdependent Dynamics during Laser Additive Manufacturing Using X-Ray Imaging Informed Multi-Physics and Multiphase Simulation
- 2021Oxidation induced mechanisms during directed energy deposition additive manufactured titanium alloy buildscitations
- 2021Achieving homogeneity in a high-Fe beta-Ti alloy laser-printed from blended elemental powderscitations
Places of action
Organizations | Location | People |
---|
article
Correlative spatter and vapour depression dynamics during laser powder bed fusion of an Al-Fe-Zr alloy
Abstract
<jats:title>Abstract</jats:title><jats:p>Spatter during laser powder bed fusion (LPBF) can induce surface defects, impacting the fatigue performance of the fabricated components. Here, we reveal and explain the links between vapour depression shape and spatter dynamics during LPBF of an Al-Fe-Zr aluminium alloy using high-speed synchrotron x-ray imaging. We quantify the number, trajectory angle, velocity, and kinetic energy of the spatter as a function of vapour depression zone/keyhole morphology under industry-relevant processing conditions. The depression zone/keyhole morphology was found to influence the spatter ejection angle in keyhole versus conduction melting modes: (i) the vapour-pressure driven plume in conduction mode with a quasi-semi-circular depression zone leads to backward spatter whereas; and (ii) the keyhole rear wall redirects the gas/vapour flow to cause vertical spatter ejection and rear rim droplet spatter. Increasing the opening of the keyhole or vapour depression zone can reduce entrainment of solid spatter. We discover a spatter-induced cavity mechanism in which small spatter particles are accelerated towards the powder bed after laser-spatter interaction, inducing powder denudation and cavities on the printed surface. By quantifying these laser-spatter interactions, we suggest a printing strategy for minimising defects and improving the surface quality of LPBF parts.</jats:p>