People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lee, Peter D.
University College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (43/43 displayed)
- 2024New insights into the mechanism of ultrasonic atomization for the production of metal powders in additive manufacturingcitations
- 2024An in situ imaging investigation of the effect of gas flow rates on directed energy depositioncitations
- 2024An in situ imaging investigation of the effect of gas flow rates on directed energy depositioncitations
- 2024Pore evolution mechanisms during directed energy deposition additive manufacturingcitations
- 2024Pore evolution mechanisms during directed energy deposition additive manufacturing
- 2024Unravelling dynamic recrystallisation in a microalloyed steel during rapid high temperature deformation using synchrotron X-rayscitations
- 2024AM-SegNet for additive manufacturing in situ X-ray image segmentation and feature quantification
- 2024Correlative spatter and vapour depression dynamics during laser powder bed fusion of an Al-Fe-Zr alloycitations
- 2024A closer look at high-energy X-ray-induced bubble formation during soft tissue imaging
- 2023In situ X-ray imaging of hot cracking and porosity during LPBF of Al-2139 with TiB2 additions and varied process parameters
- 2023Controlling solute channel formation using magnetic fields
- 2023In situ correlative observation of humping-induced cracking in directed energy deposition of nickel-based superalloys
- 2022Quantification of Interdependent Dynamics during Laser Additive Manufacturing Using X-Ray Imaging Informed Multi-Physics and Multiphase Simulation
- 2021Oxidation induced mechanisms during directed energy deposition additive manufactured titanium alloy buildscitations
- 2021Unraveling compacted graphite evolution during solidification of cast iron using in-situ synchrotron X-ray tomographycitations
- 2021Correlative synchrotron X-ray imaging and diffraction of directed energy deposition additive manufacturingcitations
- 2019Effect of preheating on the thermal, microstructural and mechanical properties of selective electron beam melted Ti-6Al-4V componentscitations
- 2018Bouncing and 3D printable hybrids with self-healing propertiescitations
- 2018Direct ink writing of highly bioactive glassescitations
- 2018Revisiting models for spheroidal graphite growthcitations
- 2018Analysis of local conditions on graphite growth and shape during solidification of ductile cast ironcitations
- 2017Atomic Layer Deposition of a Silver Nanolayer on Advanced Titanium Orthopedic Implants Inhibits Bacterial Colonization and Supports Vascularized de Novo Bone Ingrowthcitations
- 2017Investigating the evolving microstructure of lithium metal electrodes in 3D using X-ray computed tomographycitations
- 2017Characterising precipitate evolution in multi-component cast aluminium alloys using small-angle X-ray scatteringcitations
- 2016High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructurecitations
- 2016Elucidation of differential mineralisation on native and regenerated silk matricescitations
- 2016High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure.citations
- 2015Transgranular liquation cracking of grains in the semi-solid state
- 2015Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser meltingcitations
- 2014In-operando X-ray tomography study of lithiation induced delamination of Si based anodes for lithium-ion batteriescitations
- 2013A multiscale 3D model of the Vacuum Arc remelting processcitations
- 2012Industrial application of a numerical model to simulate lubrication, mould oscillation, solidification and defect formation during continuous castingcitations
- 2012Review: The "butterfly effect" in continuous castingcitations
- 2012A multi-scale 3D model of the vacuum arc remelting processcitations
- 2010Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regenerationcitations
- 2010Explicit modelling of slag infiltration and shell formation during mould oscillation in continuous castingcitations
- 2010A new approach for modelling slag infiltration and solidification in a continuous casting mouldcitations
- 2009Modelling solidification and slag infiltration during the continuous casting of slabs
- 2007Non-destructive quantitative 3D analysis for the optimisation of tissue scaffoldscitations
- 2007Non-destructive quantitative 3D analysis for the optimisation of tissue scaffoldscitations
- 2007The effect of mould flux properties on thermo-mechanical behaviour during billet continuous castingcitations
- 2006Microsegregation quantification for model validation
- 2002Mould powder selection model for continuous casting
Places of action
Organizations | Location | People |
---|
article
Correlative spatter and vapour depression dynamics during laser powder bed fusion of an Al-Fe-Zr alloy
Abstract
<jats:title>Abstract</jats:title><jats:p>Spatter during laser powder bed fusion (LPBF) can induce surface defects, impacting the fatigue performance of the fabricated components. Here, we reveal and explain the links between vapour depression shape and spatter dynamics during LPBF of an Al-Fe-Zr aluminium alloy using high-speed synchrotron x-ray imaging. We quantify the number, trajectory angle, velocity, and kinetic energy of the spatter as a function of vapour depression zone/keyhole morphology under industry-relevant processing conditions. The depression zone/keyhole morphology was found to influence the spatter ejection angle in keyhole versus conduction melting modes: (i) the vapour-pressure driven plume in conduction mode with a quasi-semi-circular depression zone leads to backward spatter whereas; and (ii) the keyhole rear wall redirects the gas/vapour flow to cause vertical spatter ejection and rear rim droplet spatter. Increasing the opening of the keyhole or vapour depression zone can reduce entrainment of solid spatter. We discover a spatter-induced cavity mechanism in which small spatter particles are accelerated towards the powder bed after laser-spatter interaction, inducing powder denudation and cavities on the printed surface. By quantifying these laser-spatter interactions, we suggest a printing strategy for minimising defects and improving the surface quality of LPBF parts.</jats:p>