People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Okay, Elif
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Enhanced compressive strength of graphene strengthened copper (G/Cu) composites
Abstract
<jats:title>Abstract</jats:title><jats:p>This study explores the compressive mechanical properties of copper composites reinforced with graphene. Graphene was synthesized on copper powders via plasma-enhanced chemical vapor deposition. Multilayer graphene formation has been substantiated by Raman analysis. Graphene-coated copper (G/Cu) powders were then subjected to pressing and sintering to fabricate G/Cu composites. The mechanical properties of G/Cu composites were investigated under compression from room temperature up to 400 °C in air. The results demonstrated a substantial improvement in the mechanical properties of G/Cu composites compared to monolithic copper. Specifically, the yield strength in compression of the G/Cu composite increased by 203% at room temperature and by 190% at 200 °C. At 400 °C, the yield strength enhancement exceeded 370%. Microstructural analysis suggests that the observed enhancements in G/Cu composites can be attributed to reduced porosity, smaller grain size, and inhibited dislocation motion at the increased grain boundary area (due to refined grain size) and graphene-copper interfaces.</jats:p>