People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sweat, Rebekah
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Data-driven Analysis of Carbon Nanotube Yarn Interfacial Bonding in Extreme Environments
- 2023Manufacturing of stereolithographic 3D printed boron nitride nanotube-reinforced ceramic composites with improved thermal and mechanical performancecitations
- 2019Collapsed carbon nanotubes : from nano to mesoscale via density functional theory-based tight-binding objective molecular modelingcitations
- 2019Collapsed carbon nanotubescitations
- 2016Characterization at Atomic Resolution of Carbon Nanotube/Resin Interface in Nanocomposites by Mapping sp2-Bonding States Using Electron Energy-Loss Spectroscopycitations
- 2015Carbon Fiber/Carbon Nanotube Buckypaper Interply Hybrid Composites: Manufacturing Process and Tensile Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Manufacturing of stereolithographic 3D printed boron nitride nanotube-reinforced ceramic composites with improved thermal and mechanical performance
Abstract
<jats:title>Abstract</jats:title><jats:p>Boron nitride nanotubes (BNNTs) are the perfect candidate for nanofillers in high-temperature multifunctional ceramics due to their high thermal stability, oxidation resistance, good mechanical properties, high thermal conductivity, and radiation shielding. In this paper, 3D printed ceramic nanocomposite with 0.1 wt% of BNNT was prepared by fusing it at high temperatures. Samples were built with three different print directions to study the effect of print layers on mechanical performance along with BNNT addition. Dynamic mechanical analysis is performed to study the length effect of nanoscale reinforcements on the mechanical properties of the printed ceramic composites reporting significant improvements up to 55% in bending strength and 72% in bending modulus with just 0.1 wt% BNNT addition. A 63% thermal diffusivity improvement of ceramic by adding BNNTs is observed using laser flash analysis. The bridging and pull-out effect of nanotubes with a longer aspect ratio was observed with high-resolution microscopy. Such composites’ modeling and simulation approaches are crucial for virtual testing and industrial applications. Understanding the effect of nanoscale synthetic fillers for 3D printed high-temperature ceramics can revolutionize future extreme environment structures.</jats:p>