Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hirscher, Michael

  • Google
  • 10
  • 86
  • 1674

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Nanoporous adsorbents for hydrogen storage41citations
  • 2022Magnesium- and intermetallic alloys-based hydrides for energy storage:Modelling, synthesis and properties78citations
  • 2022Magnesium- and intermetallic alloys-based hydrides for energy storage : modelling, synthesis and properties78citations
  • 2022Fundamentals of hydrogen storage in nanoporous materials53citations
  • 2022Fundamentals of hydrogen storage in nanoporous materials53citations
  • 2022Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties ; ENEngelskEnglishMagnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties78citations
  • 2022Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties78citations
  • 2020Materials for hydrogen-based energy storage – past, recent progress and future outlook742citations
  • 2019Barely Porous Organic Cages for Hydrogen Isotope Separation318citations
  • 2014Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites155citations

Places of action

Chart of shared publication
Oh, Hyunchul
2 / 2 shared
Ling, Sanliang
6 / 12 shared
Stavila, Vitalie
5 / 19 shared
Witman, Matthew
6 / 11 shared
Webb, Colin J.
5 / 8 shared
Allendorf, Mark D.
4 / 14 shared
Milanese, Chiara
2 / 50 shared
Pontiroli, Daniele
2 / 6 shared
Allendorf, Mark
1 / 4 shared
Webb, Colin
1 / 2 shared
Fanourgakis, Georgios
1 / 1 shared
Broom, Darren
1 / 1 shared
Parilla, Philip
1 / 1 shared
Riccò, Mauro
2 / 3 shared
Balderas-Xicohténcatl, Rafael
3 / 3 shared
Steriotis, Theodore
1 / 8 shared
Froudakis, George
1 / 1 shared
Fanourgakis, George S.
1 / 1 shared
Broom, Darren P.
2 / 2 shared
Gennett, Thomas
1 / 1 shared
Froudakis, George E.
2 / 3 shared
Shulda, Sarah
1 / 3 shared
Steriotis, Theodore A.
1 / 4 shared
Parilla, Philip A.
1 / 4 shared
Zhang, Linda
2 / 3 shared
Hurst, Katherine E.
1 / 1 shared
Schütz, Gisela
1 / 7 shared
Chen, Linjiang
1 / 9 shared
Ceriotti, Michele
1 / 5 shared
Little, Marc
1 / 2 shared
Cooper, Andrew I.
1 / 14 shared
Kapil, Venkat
1 / 4 shared
He, Donglin
1 / 2 shared
Ding, Lifeng
1 / 1 shared
Holden, Daniel L.
1 / 1 shared
Clowes, Rob
1 / 10 shared
Liu, Ming
1 / 17 shared
Yang, Siyuan
1 / 1 shared
Chong, Samantha Y.
1 / 1 shared
Savchenko, Ievgeniia
1 / 2 shared
Mavrantonakis, Andreas
1 / 3 shared
Heine, Thomas
1 / 13 shared
Chart of publication period
2023
2022
2020
2019
2014

Co-Authors (by relevance)

  • Oh, Hyunchul
  • Ling, Sanliang
  • Stavila, Vitalie
  • Witman, Matthew
  • Webb, Colin J.
  • Allendorf, Mark D.
  • Milanese, Chiara
  • Pontiroli, Daniele
  • Allendorf, Mark
  • Webb, Colin
  • Fanourgakis, Georgios
  • Broom, Darren
  • Parilla, Philip
  • Riccò, Mauro
  • Balderas-Xicohténcatl, Rafael
  • Steriotis, Theodore
  • Froudakis, George
  • Fanourgakis, George S.
  • Broom, Darren P.
  • Gennett, Thomas
  • Froudakis, George E.
  • Shulda, Sarah
  • Steriotis, Theodore A.
  • Parilla, Philip A.
  • Zhang, Linda
  • Hurst, Katherine E.
  • Schütz, Gisela
  • Chen, Linjiang
  • Ceriotti, Michele
  • Little, Marc
  • Cooper, Andrew I.
  • Kapil, Venkat
  • He, Donglin
  • Ding, Lifeng
  • Holden, Daniel L.
  • Clowes, Rob
  • Liu, Ming
  • Yang, Siyuan
  • Chong, Samantha Y.
  • Savchenko, Ievgeniia
  • Mavrantonakis, Andreas
  • Heine, Thomas
OrganizationsLocationPeople

article

Fundamentals of hydrogen storage in nanoporous materials

  • Milanese, Chiara
  • Witman, Matthew
  • Pontiroli, Daniele
  • Hirscher, Michael
  • Allendorf, Mark
  • Webb, Colin
  • Fanourgakis, Georgios
  • Broom, Darren
  • Parilla, Philip
  • Ling, Sanliang
  • Riccò, Mauro
  • Balderas-Xicohténcatl, Rafael
  • Steriotis, Theodore
  • Froudakis, George
Abstract

<jats:title>Abstract</jats:title><jats:p>Physisorption of hydrogen in nanoporous materials offers an efficient and competitive alternative for hydrogen storage. At low temperatures (e.g. 77 K) and moderate pressures (below 100 bar) molecular H<jats:sub>2</jats:sub> adsorbs reversibly, with very fast kinetics, at high density on the inner surfaces of materials such as zeolites, activated carbons and metal–organic frameworks (MOFs). This review, by experts of Task 40 ‘Energy Storage and Conversion based on Hydrogen’ of the Hydrogen Technology Collaboration Programme of the International Energy Agency, covers the fundamentals of H<jats:sub>2</jats:sub> adsorption in nanoporous materials and assessment of their storage performance. The discussion includes recent work on H<jats:sub>2</jats:sub> adsorption at both low temperature and high pressure, new findings on the assessment of the hydrogen storage performance of materials, the correlation of volumetric and gravimetric H<jats:sub>2</jats:sub> storage capacities, usable capacity, and optimum operating temperature. The application of neutron scattering as an ideal tool for characterising H<jats:sub>2</jats:sub> adsorption is summarised and state-of-the-art computational methods, such as machine learning, are considered for the discovery of new MOFs for H<jats:sub>2</jats:sub> storage applications, as well as the modelling of flexible porous networks for optimised H<jats:sub>2</jats:sub> delivery. The discussion focuses moreover on additional important issues, such as sustainable materials synthesis and improved reproducibility of experimental H<jats:sub>2</jats:sub> adsorption isotherm data by interlaboratory exercises and reference materials.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • Carbon
  • Hydrogen
  • machine learning
  • neutron scattering