Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Czarnetzki, Walter Theodor

  • Google
  • 1
  • 6
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Interaction phenomena of electrically coupled cells under local reactant starvation in automotive PEMFC stacks4citations

Places of action

Chart of shared publication
Nissen, Jens
1 / 2 shared
Huber, Johannes Frieder
1 / 1 shared
Henkel, Florian
1 / 1 shared
Hölzle, Markus
1 / 3 shared
Schwämmlein, Jan
1 / 1 shared
Schrievers, Max
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Nissen, Jens
  • Huber, Johannes Frieder
  • Henkel, Florian
  • Hölzle, Markus
  • Schwämmlein, Jan
  • Schrievers, Max
OrganizationsLocationPeople

article

Interaction phenomena of electrically coupled cells under local reactant starvation in automotive PEMFC stacks

  • Nissen, Jens
  • Huber, Johannes Frieder
  • Henkel, Florian
  • Hölzle, Markus
  • Czarnetzki, Walter Theodor
  • Schwämmlein, Jan
  • Schrievers, Max
Abstract

<jats:title>Abstract</jats:title><jats:p>The local current density distribution of polymer electrolyte membrane fuel cells (PEMFCs) can be distorted by various error states. Differences in current density distributions (CDDs) of adjacent cells in a stack are equilibrized by in-plane currents within the sandwiched bipolar plates. Degradation stressors such as detrimental differences in local cell voltage and current density maxima can thus be generated. A novel method was therefore developed to intentionally manipulate CDD profiles by integrating local artificial starvation into only one fuel cell in an assembly. This technique is applied to automotive-sized PEMFCs single cells as well as in 20 cell short-stack to analyze such voltage and current redistribution phenomena. A drastic distortion of local cell voltage is only observed for stacks, which is explained by a supplementary simulation. The local voltage distribution of an electrically coupled fuel cell is therefore calculated by combining CDD measurements with a spatially resolved polarization curve model. The capabilities and limits of a multipoint cell voltage monitoring measurement device are discussed on this basis. The inspected correlation between these two independent online measurement techniques allows to localize such error states with considerable accuracy during operation of automotive sized PEMFC stacks.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • simulation
  • current density