People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Forcieri, Leonardo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Thermoelectric properties of organic thin films enhanced by π-π stacking
Abstract
Thin films comprising synthetically robust, scalable molecules have been shown to have major potential for thermoelectric en-ergy harvesting. Previous studies of molecular thin-films have tended to focus on massively parallel arrays of discrete but iden-tical conjugated molecular wires assembled as a monolayer perpendicular to the electrode surface and anchored via a covalent bond, know as self-assembled monolayers. In these studies, to optimise the thermoelectric properties of the thin-film there has been a trade-off between synthetic complexity of the molecular components and the film performance, limiting the opportuni-ties for materials integration into practical thermoelectric devices. In this work, we demonstrate an alternative strategy for en-hancing the thermoelectric performance of molecular thin-films. We have built up a series of films, of controlled thickness, where the basic units – here zinc tetraphenylporphyrin – lie parallel to the electrodes and are linked via π-π stacking. We have compared three commonly used fabrications routes and characterised the resulting films with scanning probe and computation-al techniques. Using a Langmuir-Blodgett fabrication technique, we successfully enhanced the thermopower perpendicular to the plane of the ZnTPP multilayer film by a factor of 10, relative to the monolayer, achieving a Seebeck coefficient of -65 μV/K. Furthermore, the electronic transport of the system, perpendicular to the plane of the films, was observed to follow the tunnel-ling regime for multi-layered films, and the transport efficiency was comparable with most conjugated systems. Furthermore, scanning thermal microscopy characterisation shows a factor of 7 decrease in thermal conductance with increasing film thick-ness from monolayer to multilayer, indicating enhanced thermoelectric performance in a π-π stacked junction.