People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lambert, Colin John
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2023High Seebeck coefficient from isolated oligo-phenyl arrays on single layered graphene <i>via</i> stepwise assemblycitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2021Optimised power harvesting by controlling the pressure applied to molecular junctionscitations
- 20212D bio-based nanomaterial as a green route to amplify the formation of hydrate phases of cement composites
- 2020Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Filmscitations
- 2020Tuning the thermoelectrical properties of anthracene-based self-assembled monolayerscitations
- 2020Molecular-scale thermoelectricity: As simple as 'ABC'citations
- 2019Charge transfer complexation boosts molecular conductance through Fermi level pinningcitations
- 2019Unusual length dependence of the conductance in cumulene molecular wirescitations
- 2019Magic Number Theory of Superconducting Proximity Effects and Wigner Delay Times in Graphene-Like Moleculescitations
- 2018Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictionscitations
- 2018Toward High Thermoelectric Performance of Thiophene and Ethylenedioxythiophene (EDOT) Molecular Wirescitations
- 2018Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctionscitations
- 2018Strain-induced bi-thermoelectricity in tapered carbon nanotubescitations
- 2018Thermoelectric Properties of 2,7-Dipyridylfluorene Derivatives in Single-Molecule Junctionscitations
- 2017Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and dopingcitations
- 2017High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wirescitations
- 2017Thermoelectricity in vertical graphene-C60-graphene architecturescitations
- 2016Identification of a positive-Seebeck-coefficient exohedral fullerenecitations
- 2016Quasiparticle and excitonic gaps of one-dimensional carbon chainscitations
- 2016Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructurescitations
- 2009Anisotropic magnetoresistance in atomic chains of iridium and platinum from first principlescitations
- 2007Electronic properties of alkali- and alkaline-earth-intercalated silicon nanowires.citations
- 2006Tuning the electrical conductivity of nanotube-encapsulated metallocene wires.citations
- 2006Strongly correlated electron physics in nanotube-encapsulated metallocene chains.citations
- 2006Electronic properties of metallocene wirescitations
- 2006Spin and molecular electronics in atomically-generated orbital landscapes.citations
- 2005Point-contact Andreev reflection in ferromagnet/superconductor ballistic nanojunctionscitations
- 2004First principles simulation of the magnetic and structural properties of iron.citations
- 2000Thermopower in mesoscopic normal-superconducting structures.citations
Places of action
Organizations | Location | People |
---|
article
Thermoelectric properties of organic thin films enhanced by π-π stacking
Abstract
Thin films comprising synthetically robust, scalable molecules have been shown to have major potential for thermoelectric en-ergy harvesting. Previous studies of molecular thin-films have tended to focus on massively parallel arrays of discrete but iden-tical conjugated molecular wires assembled as a monolayer perpendicular to the electrode surface and anchored via a covalent bond, know as self-assembled monolayers. In these studies, to optimise the thermoelectric properties of the thin-film there has been a trade-off between synthetic complexity of the molecular components and the film performance, limiting the opportuni-ties for materials integration into practical thermoelectric devices. In this work, we demonstrate an alternative strategy for en-hancing the thermoelectric performance of molecular thin-films. We have built up a series of films, of controlled thickness, where the basic units – here zinc tetraphenylporphyrin – lie parallel to the electrodes and are linked via π-π stacking. We have compared three commonly used fabrications routes and characterised the resulting films with scanning probe and computation-al techniques. Using a Langmuir-Blodgett fabrication technique, we successfully enhanced the thermopower perpendicular to the plane of the ZnTPP multilayer film by a factor of 10, relative to the monolayer, achieving a Seebeck coefficient of -65 μV/K. Furthermore, the electronic transport of the system, perpendicular to the plane of the films, was observed to follow the tunnel-ling regime for multi-layered films, and the transport efficiency was comparable with most conjugated systems. Furthermore, scanning thermal microscopy characterisation shows a factor of 7 decrease in thermal conductance with increasing film thick-ness from monolayer to multilayer, indicating enhanced thermoelectric performance in a π-π stacked junction.