People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Anna, Fontcuberta I. Morral
École Polytechnique Fédérale de Lausanne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Understanding the growth mechanism of BaZrS 3 chalcogenide perovskite thin films from sulfurized oxide precursorscitations
- 2023Understanding the growth mechanism of BaZrS<sub>3</sub> chalcogenide perovskite thin films from sulfurized oxide precursorscitations
- 2023The 2022 applied physics by pioneering women: a roadmapcitations
- 2022Nanoscale Growth Initiation as a Pathway to Improve the Earth-Abundant Absorber Zinc Phosphidecitations
- 2022Showcasing the optical properties of monocrystalline zinc phosphide thin films as an earth-abundant photovoltaic absorbercitations
- 2022Fabrication of Single-Crystalline InSb-on-Insulator by Rapid Melt Growthcitations
- 2022The Advantage of Nanowire Configuration in Band Structure Determinationcitations
- 2021The path towards 1 µm monocrystalline Zn<sub>3</sub>P<sub>2</sub> films on InP: substrate preparation, growth conditions and luminescence propertiescitations
- 2020Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation.
- 2020Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisationcitations
- 2019Highly sensitive piezotronic pressure sensors based on undoped GaAs nanowire ensemblescitations
- 2019Unveiling Temperature-Dependent Scattering Mechanisms in Semiconductor Nanowires Using Optical-Pump Terahertz-Probe Spectroscopycitations
- 2018Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>Pb<sub>3</sub>Br<sub>10</sub> thin filmscitations
- 2018High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowirescitations
- 2018Metallized Boron-Doped Black Silicon Emitters For Front Contact Solar Cellscitations
- 2017Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowirescitations
- 2014Gold-free ternary III-V antimonide nanowire arrays on silicon: twin-free down to the first bilayercitations
- 2014Gold-free ternary III-V antimonide nanowire arrays on silicon : twin-free down to the first bilayercitations
Places of action
Organizations | Location | People |
---|
article
The path towards 1 µm monocrystalline Zn<sub>3</sub>P<sub>2</sub> films on InP: substrate preparation, growth conditions and luminescence properties
Abstract
<jats:title>Abstract</jats:title><jats:p>Semiconductors made with earth abundant elements are promising as absorbers in future large-scale deployment of photovoltaic technology. This paper reports on the epitaxial synthesis of monocrystalline zinc phosphide <jats:inline-formula><jats:tex-math><?CDATA $( {{{Z}}{{{n}}_3}{{{P}}_2}} )$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mfenced close=")" open="("><mml:mrow><mml:mrow><mml:mtext>Z</mml:mtext></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>n</mml:mtext></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>P</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:mrow></mml:mfenced></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpenergyabf723ieqn1.gif" xlink:type="simple" /></jats:inline-formula> films using molecular beam epitaxy with thicknesses up to 1 <jats:italic>µ</jats:italic>m thickness on InP (100) substrates, as demonstrated by high resolution transmission electron microscopy and x-ray diffraction. We explain the mechanisms by which thick monocrystalline layers can form. We correlate the crystalline quality with the optical properties by photoluminescence at 12 K. Polycrystalline and monocrystalline films exhibit dissimilar photoluminescence below the bandgap at 1.37 and 1.30 eV, respectively. Band edge luminescence at 1.5 eV is only detected for monocrystalline samples. This work establishes a reliable method for fabricating high-quality <jats:inline-formula><jats:tex-math><?CDATA ${{Z}}{{{n}}_3}{{{P}}_2}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mtext>Z</mml:mtext></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>n</mml:mtext></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>P</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpenergyabf723ieqn2.gif" xlink:type="simple" /></jats:inline-formula> thin films that can be employed in next generation photovoltaic applications.</jats:p>