People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zamani, Reza
École Polytechnique Fédérale de Lausanne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021The path towards 1 µm monocrystalline Zn<sub>3</sub>P<sub>2</sub> films on InP: substrate preparation, growth conditions and luminescence propertiescitations
- 2020Anti-inflammatory activity of emu oil-based nanofibrous scaffold through downregulation of IL-1, IL-6, and TNF-α pro-inflammatory cytokinescitations
- 2014Colloidal synthesis and functional properties of quaternary Cu-based semiconductors: Cu2HgGeSe4citations
- 2013Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystalscitations
- 2013Core-Shell Nanoparticles As Building Blocks for the Bottom-Up Production of Functional Nanocomposites: PbTe-PbS Thermoelectric Propertiescitations
- 2012Crystallographic control at the nanoscale to enhance functionality: polytypic Cu2GeSe3 nanoparticles as thermoelectric materialscitations
Places of action
Organizations | Location | People |
---|
article
The path towards 1 µm monocrystalline Zn<sub>3</sub>P<sub>2</sub> films on InP: substrate preparation, growth conditions and luminescence properties
Abstract
<jats:title>Abstract</jats:title><jats:p>Semiconductors made with earth abundant elements are promising as absorbers in future large-scale deployment of photovoltaic technology. This paper reports on the epitaxial synthesis of monocrystalline zinc phosphide <jats:inline-formula><jats:tex-math><?CDATA $( {{{Z}}{{{n}}_3}{{{P}}_2}} )$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mfenced close=")" open="("><mml:mrow><mml:mrow><mml:mtext>Z</mml:mtext></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>n</mml:mtext></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>P</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:mrow></mml:mfenced></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpenergyabf723ieqn1.gif" xlink:type="simple" /></jats:inline-formula> films using molecular beam epitaxy with thicknesses up to 1 <jats:italic>µ</jats:italic>m thickness on InP (100) substrates, as demonstrated by high resolution transmission electron microscopy and x-ray diffraction. We explain the mechanisms by which thick monocrystalline layers can form. We correlate the crystalline quality with the optical properties by photoluminescence at 12 K. Polycrystalline and monocrystalline films exhibit dissimilar photoluminescence below the bandgap at 1.37 and 1.30 eV, respectively. Band edge luminescence at 1.5 eV is only detected for monocrystalline samples. This work establishes a reliable method for fabricating high-quality <jats:inline-formula><jats:tex-math><?CDATA ${{Z}}{{{n}}_3}{{{P}}_2}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mtext>Z</mml:mtext></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>n</mml:mtext></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mtext>P</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpenergyabf723ieqn2.gif" xlink:type="simple" /></jats:inline-formula> thin films that can be employed in next generation photovoltaic applications.</jats:p>