People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fermín, David J.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2024Activating Mn Sites by Ni Replacement in α-MnO2citations
- 2024Correlating molecular precursor interactions with device performance in solution-processed Cu2ZnSn(S,Se)4 thin-film solar cellscitations
- 2022Correlating Orbital Composition and Activity of LaMnxNi1–xO3 Nanostructures toward Oxygen Electrocatalysiscitations
- 2021Electrocatalytic Site Activity Enhancement via Orbital Overlap in A 2MnRuO 7(A = Dy 3+, Ho 3+, and Er 3+) Pyrochlore Nanostructurescitations
- 2020High Interfacial Hole‐Transfer Efficiency at GaFeO3 Thin Film Photoanodescitations
- 2020Pulsed laser deposition of single phase n- and p-type Cu2O thin films with low resistivitycitations
- 2020Promoting Active Electronic States in LaFeO3 Thin-Films Photocathodes via Alkaline-Earth Metal Substitutioncitations
- 2019Doping and alloying of kesteritescitations
- 2019Photovoltaic Performance of Phase-Pure Orthorhombic BiSI Thin-Filmscitations
- 2018Insights into the durability of Co-Fe spinel oxygen evolution electrocatalystscitations
- 2018Impact of Sb and Na Doping on the Surface Electronic Landscape of Cu2ZnSnS4 Thin Filmscitations
- 2018Investigating the Role of the Organic Cation in Formamidinium Lead Iodide Perovskite Using Ultrafast Spectroscopycitations
- 2018AMnO3 (A = Sr, La, Ca, Y) Perovskite Oxides as Oxygen Reduction Electrocatalystscitations
- 2017YFeO3 Photocathodes for Hydrogen Evolutioncitations
- 2017Textured PbI2 photocathodes obtained by gas phase anion replacementcitations
- 2017Single molecular precursor solution for CuIn(S,Se)2 thin films photovoltaic cellscitations
- 2017Solution Processed Single-Phase Cu2SnS3 filmscitations
- 2017Spectroscopic and electrical signatures of acceptor states in solution processed Cu2ZnSn(S,Se)4 solar cellscitations
- 2017Real-Time Tracking of Metal Nucleation via Local Perturbation of Hydration Layerscitations
- 2017YFeO 3 Photocathodes for Hydrogen Evolutioncitations
- 2016Cu2ZnSnS4 thin-films generated from a single solution based precursorcitations
- 2016Influence of thermal treatments on the stability of Pd nanoparticles supported on graphitised ordered mesoporous carbonscitations
- 2016A Synthetic Route for the Effective Preparation of Metal Alloy Nanoparticles and Their Use as Active Electrocatalystscitations
- 2015Crystal structure and defects visualization of Cu2ZnSnS4 nanoparticles employing transmission electron microscopy and electron diffractioncitations
- 2015Surface Activation of Pt Nanoparticles Synthesised by "Hot Injection" in the Presence of Oleylaminecitations
- 2015Growth of Epitaxial Pt<inf>1-x</inf>Pb<inf>x</inf> Alloys by Surface Limited Redox Replacement and Study of Their Adsorption Propertiescitations
- 2015Crystal structure and defects visualization of Cu 2 ZnSnS 4 nanoparticles employing transmission electron microscopy and electron diffractioncitations
- 2015Solution processed bismuth ferrite thin films for all-oxide solar photovoltaicscitations
- 2015Fast One-Pot Synthesis of MoS2/Crumpled Graphene p-n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Productioncitations
- 2015High surface area diamond-like carbon electrodes grown on vertically aligned carbon nanotubescitations
- 2013Electrochemical crystallization of spatially organized copper microwire arrays within biomineralized (dentine) templatescitations
- 2013Structure and Band Edge Energy of Highly Luminescent CdSei(1-x)Te(x) Alloyed Quantum Dotscitations
- 2012Electrocatalytic Properties of Strained Pd Nanoshells at Au Nanostructures: CO and HCOOH Oxidationcitations
- 2011Hydrogen Adsorption at Strained Pd Nanoshellscitations
- 2005Adsorption and photoreactivity of CdSe nanoparticles at liquid|liquid interfacescitations
- 2004Electrochemical and optical properties of two dimensional electrostatic assembly of Au nanocrystalscitations
- 2003Photoinduced electron transfer at liquid vertical bar liquid interfaces. Part VII. Correlation between self-organisation and structure of water-soluble photoactive speciescitations
Places of action
Organizations | Location | People |
---|
article
Doping and alloying of kesterites
Abstract
Attempts to improve the efficiency of kesterite solar cells by changing the intrinsic stoichiometry have not helped to boost the device efficiency beyond the current record of 12.6%. In this light, the addition of extrinsic elements to the Cu2ZnSn(S,Se)4 matrix in various quantities has emerged as a popular topic aiming to ameliorate electronic properties of the solar cell absorbers. This article reviews extrinsic doping and alloying concepts for kesterite absorbers with the focus on those that do not alter the parent zinc-blende derived kesterite structure. The latest state-of-the-art of possible extrinsic elements is presented in the order of groups of the Periodic Table. The highest reported solar cell efficiencies for each extrinsic dopant are tabulated at the end. Several dopants like alkali elements and substitutional alloying with Ag, Cd or Ge have been shown to improve the device performance of kesterite solar cells as compared to the nominally undoped references, although it is often difficult to differentiate between pure electronic effects and other possible influences such as changes in the crystallization path, deviations in matrix composition and presence of alkali dopants coming from the substrates. The review is concluded with a suggestion to intensify efforts for identifying intrinsic defects that negatively affect electronic properties of the kesterite absorbers, and, if identified, to test extrinsic strategies that may compensate these defects. Characterization techniques must be developed and widely used to reliably access semiconductor absorber metrics such as the quasi-Fermi level splitting, defect concentration and their energetic position, and carrier lifetime in order to assist in search for effective doping/alloying strategies.