People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Placidi, Marcel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023SbSeI and SbSeBr micro-columnar solar cells by a novel high pressure-based synthesis processcitations
- 2022A new approach for alkali incorporation in Cu2ZnSnS4 solar cells
- 2021The effect of annealing temperature on Cu<sub>2</sub>ZnGeSe<sub>4</sub> thin films and solar cells grown on transparent substratescitations
- 2021Electron beam lithography for direct patterning of MoS2on PDMS substratescitations
- 2021The effect of annealing temperature on Cu2ZnGeSe4 thin films and solar cells grown on transparent substratescitations
- 2020Fracturing of polycrystalline MoS2 nanofilmscitations
- 2020Fracturing of Polycrystalline MoS2Nanofilmscitations
- 2019Doping and alloying of kesteritescitations
- 2019Doping and alloying of kesteritescitations
- 2016Thermal conductivity of MoS2 polycrystalline nanomembranes
- 2009Effects of cap layer on ohmic Ti/Al contacts to Si + implanted GaNcitations
Places of action
Organizations | Location | People |
---|
article
Doping and alloying of kesterites
Abstract
Attempts to improve the efficiency of kesterite solar cells by changing the intrinsic stoichiometry have not helped to boost the device efficiency beyond the current record of 12.6%. In this light, the addition of extrinsic elements to the Cu2ZnSn(S,Se)4 matrix in various quantities has emerged as a popular topic aiming to ameliorate electronic properties of the solar cell absorbers. This article reviews extrinsic doping and alloying concepts for kesterite absorbers with the focus on those that do not alter the parent zinc-blende derived kesterite structure. The latest state-of-the-art of possible extrinsic elements is presented in the order of groups of the Periodic Table. The highest reported solar cell efficiencies for each extrinsic dopant are tabulated at the end. Several dopants like alkali elements and substitutional alloying with Ag, Cd or Ge have been shown to improve the device performance of kesterite solar cells as compared to the nominally undoped references, although it is often difficult to differentiate between pure electronic effects and other possible influences such as changes in the crystallization path, deviations in matrix composition and presence of alkali dopants coming from the substrates. The review is concluded with a suggestion to intensify efforts for identifying intrinsic defects that negatively affect electronic properties of the kesterite absorbers, and, if identified, to test extrinsic strategies that may compensate these defects. Characterization techniques must be developed and widely used to reliably access semiconductor absorber metrics such as the quasi-Fermi level splitting, defect concentration and their energetic position, and carrier lifetime in order to assist in search for effective doping/alloying strategies.