People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wadsworth, Andrew
University of Oxford
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021Ternary organic photodetectors based on pseudo-binaries nonfullerene-based acceptorscitations
- 2020Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stabilitycitations
- 2020Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability.citations
- 2020High-density polyethylene—an inert additive with stabilizing effects on organic field-effect transistorscitations
Places of action
Organizations | Location | People |
---|
article
Ternary organic photodetectors based on pseudo-binaries nonfullerene-based acceptors
Abstract
<jats:title>Abstract</jats:title><jats:p>The addition of a third component to a donor:acceptor blend is a powerful tool to enhance the power conversion efficiency of organic solar cells. Featuring a similar operating mechanism, organic photodetectors are also expected to benefit from this approach. Here, we fabricated ternary organic photodetectors, based on a polymer donor and two nonfullerene acceptors, resulting in a low dark current of 0.42 nA cm<jats:sup>−2</jats:sup> at −2 V and a broadband specific detectivity of 10<jats:sup>12</jats:sup> Jones. We found that exciton recombination in the binary blend is reduced in ternary devices due to the formation of a pseudo-binary microstructure with mixed donor–acceptor phases. With this approach a wide range of intermediate open-circuit voltages is accessible, without sacrificing light-to-current conversion. This results in ternary organic photodetector (TOPD) with improved Responsivity values in the near-infrared. Moreover, morphology analyses reveal that TOPD devices showed improved microstructure ordering and consequentially higher charge carrier mobilities compared to the reference devices.</jats:p>