Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Spear, Ashley

  • Google
  • 2
  • 10
  • 121

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Modeling process–structure–property relationships in metal additive manufacturing: a review on physics-driven versus data-driven approaches108citations
  • 2020Computational analysis of the effects of geometric irregularities and post-processing steps on the mechanical behavior of additively manufactured 316L stainless steel stents13citations

Places of action

Chart of shared publication
Tan, Wenda
1 / 4 shared
Li, Xuxiao
1 / 3 shared
Kappes, Branden
1 / 1 shared
Noster, Ulf
1 / 20 shared
Schultheiß, Ulrich
1 / 6 shared
Schmid, Christof
1 / 2 shared
Wiesent, Lisa
1 / 3 shared
Schratzenstaller, Thomas
1 / 2 shared
Lulla, Philipp
1 / 3 shared
Nonn, Aida
1 / 19 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Tan, Wenda
  • Li, Xuxiao
  • Kappes, Branden
  • Noster, Ulf
  • Schultheiß, Ulrich
  • Schmid, Christof
  • Wiesent, Lisa
  • Schratzenstaller, Thomas
  • Lulla, Philipp
  • Nonn, Aida
OrganizationsLocationPeople

article

Modeling process–structure–property relationships in metal additive manufacturing: a review on physics-driven versus data-driven approaches

  • Tan, Wenda
  • Li, Xuxiao
  • Kappes, Branden
  • Spear, Ashley
Abstract

<jats:title>Abstract</jats:title><jats:p>Metal additive manufacturing (AM) presents advantages such as increased complexity for a lower part cost and part consolidation compared to traditional manufacturing. The multiscale, multiphase AM processes have been shown to produce parts with non-homogeneous microstructures, leading to variability in the mechanical properties based on complex process–structure–property (p-s-p) relationships. However, the wide range of processing parameters in additive machines presents a challenge in solely experimentally understanding these relationships and calls for the use of digital twins that allow to survey a larger set of parameters using physics-driven methods. Even though physics-driven methods advance the understanding of the p-s-p relationships, they still face challenges of high computing cost and the need for calibration of input parameters. Therefore, data-driven methods have emerged as a new paradigm in the exploration of the p-s-p relationships in metal AM. Data-driven methods are capable of predicting complex phenomena without the need for traditional calibration but also present drawbacks of lack of interpretability and complicated validation. This review article presents a collection of physics- and data-driven methods and examples of their application for understanding the linkages in the p-s-p relationships (in any of the links) in widely used metal AM techniques. The review also contains a discussion of the advantages and disadvantages of the use of each type of model, as well as a vision for the future role of both physics-driven and data-driven models in metal AM.</jats:p>

Topics
  • microstructure
  • additive manufacturing