Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kino, Hiori

  • Google
  • 3
  • 12
  • 66

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Evidence-based recommender system for high-entropy alloys20citations
  • 2019Ensemble learning reveals dissimilarity between rare-earth transition-metal binary alloys with respect to the Curie temperature13citations
  • 2018Learning structure-property relationship in crystalline materials: A study of lanthanide–transition metal alloys33citations

Places of action

Chart of shared publication
Nguyen, Viet Cuong
1 / 1 shared
Nagata, Takahiro
1 / 4 shared
Nguyen, Duong-Nguyen
2 / 2 shared
Denoeux, Thierry
1 / 1 shared
Huynh, Van-Nam
1 / 1 shared
Miyake, Takashi
3 / 3 shared
Chikyow, Toyohiro
1 / 5 shared
Nguyen, Viet-Cuong
1 / 1 shared
Pham, Tien-Lam
2 / 2 shared
Dam, Hieu-Chi
1 / 1 shared
Nguyen, Van-Doan
1 / 1 shared
Nguyen, Nguyen-Duong
1 / 1 shared
Chart of publication period
2021
2019
2018

Co-Authors (by relevance)

  • Nguyen, Viet Cuong
  • Nagata, Takahiro
  • Nguyen, Duong-Nguyen
  • Denoeux, Thierry
  • Huynh, Van-Nam
  • Miyake, Takashi
  • Chikyow, Toyohiro
  • Nguyen, Viet-Cuong
  • Pham, Tien-Lam
  • Dam, Hieu-Chi
  • Nguyen, Van-Doan
  • Nguyen, Nguyen-Duong
OrganizationsLocationPeople

article

Ensemble learning reveals dissimilarity between rare-earth transition-metal binary alloys with respect to the Curie temperature

  • Nguyen, Viet-Cuong
  • Pham, Tien-Lam
  • Nguyen, Duong-Nguyen
  • Kino, Hiori
  • Miyake, Takashi
Abstract

<jats:title>Abstract</jats:title><jats:p>We propose a data-driven method to extract dissimilarity between materials, with respect to a given target physical property. The technique is based on an ensemble method with Kernel ridge regression as the predicting model; multiple random subset sampling of the materials is done to generate prediction models and the corresponding contributions of the reference training materials in detail. The distribution of the predicted values for each material can be approximated by a Gaussian mixture models. The reference training materials contributed to the prediction model that accurately predicts the physical property value of a specific material, are considered to be similar to that material, or vice versa. Evaluations using synthesized data demonstrate that the proposed method can effectively measure the dissimilarity between data instances. An application of the analysis method on the data of Curie temperature (<jats:inline-formula><jats:tex-math> <?CDATA ${T}_{{{C}}}$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpmaterab1738ieqn1.gif" xlink:type="simple" /></jats:inline-formula>) of binary 3<jats:italic>d</jats:italic> transition metal- 4<jats:italic>f</jats:italic> rare-earth binary alloys also reveals meaningful results on the relations between the materials. The proposed method can be considered as a potential tool for obtaining a deeper understanding of the structure of data, with respect to a target property, in particular.</jats:p>

Topics
  • impedance spectroscopy
  • random
  • Curie temperature