Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Karakaplan, Mehmet Baran

  • Google
  • 1
  • 2
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Mesoporous silica shell in a core@shell nanocomposite design enables antibacterial action with multiple modes of action1citations

Places of action

Chart of shared publication
Pamukçu, Ayşenur
1 / 2 shared
Sen Karaman, Didem
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Pamukçu, Ayşenur
  • Sen Karaman, Didem
OrganizationsLocationPeople

article

Mesoporous silica shell in a core@shell nanocomposite design enables antibacterial action with multiple modes of action

  • Pamukçu, Ayşenur
  • Karakaplan, Mehmet Baran
  • Sen Karaman, Didem
Abstract

<jats:title>Abstract</jats:title><jats:p>Core@shell structured nanocomposites have received significant attention for their synergistic mode of antibacterial action. Identification of the accommodated unit’s function in the core@shell nanostructure is necessary in order to determine whether antibacterial synergism against bacterial cell growth that is provided within the same core@shell structure. Herein, a novel nanostructure(s) composed of a cerium oxide core and a porous silica shell (CeO<jats:sub>2</jats:sub>@pSiO<jats:sub>2</jats:sub>) accomodating curcumin and lectin was prepared, and the antibacterial synergism provided by the nanocomposite was identified. The resulting spherical-shaped CeO<jats:sub>2</jats:sub>@pSiO<jats:sub>2</jats:sub> nanostructure allowed accommodation of curcumin loading (9 w/w%) and a lectin (concanavalin A) coating (15 w/w%). The antibacterial synergism was tested using a minimal inhibitory concentration assay against an <jats:italic>Escherichia coli</jats:italic> Gram-negative bacterial strain. Furthermore, the mechanisms of bacterial cell disruption induced by the curcumin-loaded and concanavalin A-coated CeO<jats:sub>2</jats:sub>@pSiO<jats:sub>2</jats:sub> core@shell structure, namely the nanoantibiotic (nano-AB) and its design components, were identified. Our findings reveal that the mesoporous silica shell around the CeO<jats:sub>2</jats:sub> core within the nano-AB design aids the accommodation of curcumin and concanavalin A and promotes destruction of bacterial cell motility and the permeability of the inner and outer bacterial cell membranes. Our findings strongly indicate the promising potential of a mesoporous silica shell around nanoparticles with a CeO<jats:sub>2</jats:sub> core to provide synergistic antibacterial treatment and attack bacterial cells by different mechanisms of action.</jats:p>

Topics
  • nanoparticle
  • porous
  • nanocomposite
  • impedance spectroscopy
  • permeability
  • Cerium