People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Beydaghi, Hossein
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Engineering of perovskite/electron-transporting layer interface with transition metal chalcogenides for improving the performance of inverted perovskite solar cellscitations
- 2024Venice’s macroalgae-derived active material for aqueous, organic, and solid-state supercapacitorscitations
- 2024Coexistence of Redox‐Active Metal and Ligand Sites in Copper‐based 2D Conjugated Metal‐Organic Frameworks for Battery‐Supercapacitor hybrid systemscitations
- 2023New nanocomposite membranes based on polybenzimidazole with improved fuel cell performance at high temperaturescitations
- 2022Carbon-α-Fe2O3 Composite Active Material for High-Capacity Electrodes with High Mass Loading and Flat Current Collector for Quasi-Symmetric Supercapacitorscitations
- 2021Novel proton conducting core–shell PAMPS-PVBS@Fe2TiO5 nanoparticles as a reinforcement for SPEEK based membranescitations
- 2020Fabrication and performance evaluation of new nanocomposite membranes based on sulfonated poly(phthalazinone ether ketone) for PEM fuel cellscitations
- 2018Novel nanocomposite membrane based on Fe3O4@TDI@TiO2–SO3H: hydration, mechanical and DMFC studycitations
- 2014cross linked poly vinyl alcohol sulfonated nanoporous silica hybrid membranes for proton exchange membrane fuel cellcitations
Places of action
Organizations | Location | People |
---|
article
New nanocomposite membranes based on polybenzimidazole with improved fuel cell performance at high temperatures
Abstract
<jats:title>Abstract</jats:title><jats:p>In this work, proton exchange membranes based on polybenzimidazole (PBI) with incorporation of acidic Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>@SiO<jats:sub>2</jats:sub>@RF (resorcinol–formaldehyde)–SO<jats:sub>3</jats:sub>H nanoparticles are produced. The effects of the core@double-shell nanoparticles on the fuel cell performance of the PBI membrane are examined. The obtained results demonstrate that the proton conductivity of the PBI-Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>@SiO<jats:sub>2</jats:sub>@RF–SO<jats:sub>3</jats:sub>H nanocomposite membranes increases. The interactions of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>@SiO<jats:sub>2</jats:sub>@RF–SO<jats:sub>3</jats:sub>H nanoparticles in the PBI matrix (which contains phosphoric acid) have strong effects on proton conductivity. The best proton conductivity of 170 mS cm<jats:sup>−1</jats:sup>is obtained in the nanocomposite membrane at 180 °C. The potential for the use of these nanocomposite membranes with improved fuel cell performance in high-temperature applications is confirmed.</jats:p>