Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kerminen, Juho

  • Google
  • 1
  • 5
  • 8

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Low-cost thin film patch antennas and antenna arrays with various background wall materials for indoor wireless communications8citations

Places of action

Chart of shared publication
Karakoç, Alp
1 / 18 shared
Jäntti, Riku
1 / 1 shared
Mela, Lauri
1 / 1 shared
Xie, Boxuan
1 / 1 shared
Ruttik, Kalle
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Karakoç, Alp
  • Jäntti, Riku
  • Mela, Lauri
  • Xie, Boxuan
  • Ruttik, Kalle
OrganizationsLocationPeople

article

Low-cost thin film patch antennas and antenna arrays with various background wall materials for indoor wireless communications

  • Karakoç, Alp
  • Jäntti, Riku
  • Mela, Lauri
  • Xie, Boxuan
  • Kerminen, Juho
  • Ruttik, Kalle
Abstract

<p>The present study introduces an inkjet-printed flexible coplanar waveguide patch antenna array concept. Single antenna and four-element antenna arrays were characterized, which were attached to a subminiature version A connector via an innovative solderless, 3D-printed ‘plug-and-play-type’ tightener. Furthermore, indoor wireless communication and Internet of Things scenarios with commonly used wall materials including gypsum and plywood boards, on which patch antennas and antenna arrays can be attached, were also presented. In order to validate the concept, design and fabrication iterations in parallel with numerical and experimental investigations were executed. To elaborate, single antenna and antenna array configurations without and with wall materials were characterized to see their functionality at 2.4 GHz resonance frequency and beyond 300 MHz bandwidth, respectively. The results demonstrate that the investigated configurations fulfill short-range radio transmission and can be utilized, e.g., for indoor backscattering-type communications and wireless sensing applications, as an affordable and versatile alternative to their conventional counterparts. Being attached to their corresponding background materials, single-antenna specimens were measured to have return losses beyond 18 dB and peak gains around 1 dBi, while higher peak gains above 6 dBi were detected for antenna arrays. Moreover, the antenna arrays can enable multiple-input and multiple-output communication. The proposed arrays had diversity performance in terms of return losses higher than 15 dB, isolation of more than 20 dB, envelope correlation coefficient &lt; 0.001 , diversity gain &gt; 9.95 dB, mean effective gain &lt; − 3 dB, power ratio factor &lt; 0.5 dB, and channel capacity loss &lt; 0.4 bits/s/Hz.</p>

Topics
  • thin film
  • gypsum